PIPE HANGER Design & Engineering

www.anvilintl.com

PIPING and PIPE HANGER DESIGN and ENGINEERING

WEIGHTS OF PIPING MATERIALS

The material in this booklet has been compiled to furnish pipe hanger engineers with the necessary data and procedures to determine pipe hanger loads and thermal movements of the pipe at each hanger location.

The tabulation of weights has been arranged for convenient selection of data that formerly consumed considerable time to develop. In many instances this information was not available for general distribution. This made it necessary to develop average or approximate weights that may be substituted with actual weights whenever practical.

LOAD CALCULATION PROBLEM

The "Hanger Load Calculation Problem" is typical of the actual steps required in the solution of any pipe hanger installation.

Great care was taken in collecting and printing data in this booklet to assure accuracy throughout. However, no representation or warranty of accuracy of the contents of this booklet is made by Anvil. The only warranties made by Anvil are those contained in sales contracts for design services or products.

CONTENTS	Page
Design of Pipe Hangers	4
Determination of Hanger Locations	4
Hanger Load Calculations	6
Thermal Movement Calculations	11
Selection of the Proper Hangers	13
Typical Pipe Support Specification	
Nuclear pipe Hangers	
Seismic Supports	
Supports for Grooved Piping	
Application Examples	
Weights of Piping Materials	
Charts and Tables	

Copyright © 2003 Anvil International, North Kingstown, R.I. sales offices and warehouses on back cover

INTRODUCTION

To avoid confusion, it is necessary to define the terms pipe hanger and pipe support and clarify the difference between the two. Pipe hangers are generally considered to be those metal elements which carry the weight from above with the supporting members being mainly in tension. Pipe supports are considered to be those elements which carry the weight from below with the supporting members being mainly in compression.

It has become widely recognized that the selection and design of pipe hangers is an important part of the engineering study of any modern steam generating or process installation. Problems of pipe design for high temperature, high pressure installations have become critical to a point where it is imperative that such aspects of design as the effect of concentrated hanger loads on building structure, pipe weight loads on equipment connections, and physical clearances of the hanger components with piping and structure be taken into account at the early design stages of a project.

Engineers specializing in the design of pipe hangers have established efficient methods of performing the work required to arrive at appropriate hanger designs. However, the engineer who devotes varying portions of his time to the design of pipe hangers often must gather a considerable amount of reference data peculiar only to the hanger calculations for his current project.

It is the purpose of this article to present a compilation of all information necessary for the design of hangers, including a technical section devoted to the listing of piping material, weights, and thermal expansion data. Also, the discussions of the various steps involved in designing supports, presented here in their proper sequence, should serve as a good reference source for the engineer who only occasionally becomes involved in the essentials of hanger design.

The first of these steps is that of determining and obtaining the necessary amount of basic information before proceeding with calculations and detailing of the pipe supports. No design is complete unless the engineer has had the opportunity to review the equivalent of the following project data:

- The pipe hanger specification, when available (A typical hanger specification is shown on pages 21 and 22).
- A complete set of piping drawings.
- A complete set of steel and structural drawings including equipment foundation and boiler structure details.
- A complete set of drawings showing the location of ventilating ducts, electrical trays, pumps, tanks, etc.
- The appropriate piping specifications and data, which will include pipe sizes and composition identification, wall thicknesses, and operating temperatures.
- A copy of the insulation specifications with densities.
- Valve and special fittings lists, which will indicate weights.
- The movements of all critical equipment connections such as boiler headers, steam drums, turbine connections, etc.
- The results of the stress, flexibility and movement calculation performed for critical systems such as Main Steam, High Temperature Reheat, etc.

The steps in which the engineer applies this information are:

- (1) Determine hanger locations.
- (2) Calculate hanger loads.
- (3) Determine thermal movement of the piping at each hanger location.
- (4) Select hanger types: spring assembly, either constant support, variable spring type, rigid assembly, etc.
- (5) Check clearance between the hanger components and nearby piping, electrical cable trays, conduits, ventilating ducts, and equipment.

The final step will not be discussed to any great degree. This aspect of design is governed solely by the requirements and layouts of the individual job. Instead, attention will be devoted to steps 1 to 4, where the scope of good hanger practice can be generally defined for any installation.

Recognizing that each new piping design presents many new challenges to the engineer, no attempt is made to state fixed rules and limits applicable to every hanger design. Rather, the intention is to illustrate ideas which will serve as a guide to a simple, practical solution to any pipe support problem.

INTEGRAL ATTACHMENTS

Integral attachments are fabricated so that the attachment is an integral part of the piping component. Examples of integral attachments include ears, shoes, lugs, cylindrical attachments, rings and skirts. Integral attachments are used in conjunction with restraints or braces where multi-axial restraint in a single member is required. Of particular importance is the localized stresses induced into the piping or piping component by the integral attachments. Several methods to determine the local stresses are available including relatively simple hand/ cookbook calculations provided in Welding Research Council (WRC) Bulletins 107, 198, and 297, ASME Code Cases N-318 and N-392, or through a detailed finite element analysis. Section 121 of ASME B31.1 discusses additional considerations for integral attachments.

HANGER SPANS

Support locations are dependent on pipe size, piping configuration, the location of heavy valves and fittings, and the structure that is available for the support of the piping.

No firm rules or limits exist which will positively fix the location of each support on a piping system. Instead, the engineer must exercise his own judgement in each case to determine the appropriate hanger location.

The suggested maximum spans between hangers listed in table below reflect the practical considerations involved in determining support spacings on straight runs of standard wall pipe. They are normally used for the support spacings of critical systems.

Span Between Supports																		
Nom. Pipe Size (In.)	1	1 ½	2	2 ¹ /2	3	3 ½	4	5	6	8	10	12	14	16	18	20	24	30
Span Water (Ft.)	7	9	10	11	12	13	14	16	17	19	22	23	25	27	28	30	32	33
Steam, Gas, Air (Ft.)	9	12	13	14	15	16	17	19	21	24	26	30	32	35	37	39	42	44

The spans in table are in accordance with MSS Standard Practice SP-69. They do not apply where concentrated weights such as valves or heavy fittings or where changes in direction of the piping system occur between hangers.

For concentrated loads, supports should be placed as close as possible to the load in order to minimize bending stresses.

Where changes in direction of the piping of any critical system occur between hangers; it is considered good practice to keep the total length of pipe between the supports less than $\frac{3}{4}$ the full spans in table below.

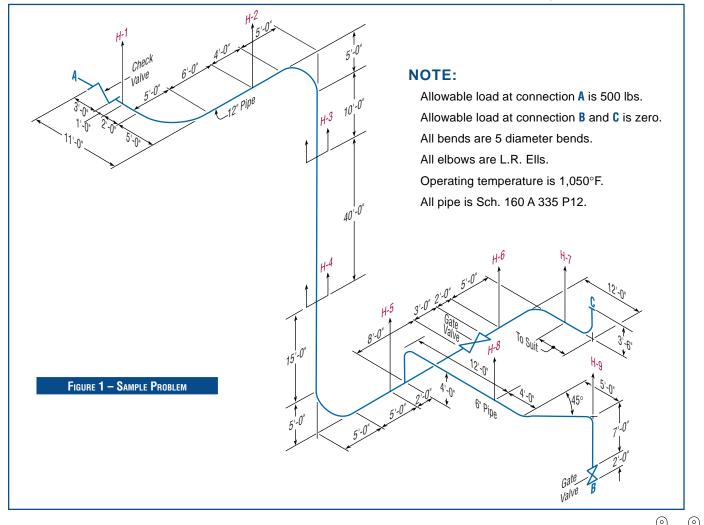
When practical, a hanger should be located immediately adjacent to any change in direction of the piping.

SAMPLE PROBLEM

In the sample problem (Figure 1) seven supports are shown on the 12 inch line, and two on the 6 inch pipe.

Note that the hanger H-1 has been placed adjacent to the valve weight concentration. The proximity of the hanger to the valve is helpful in keeping the load at terminal connection A to a minimum. Also, the bending stresses induced in the pipe by the valve weight are kept to a minimum.

The selection of the location for hanger H-2 entails a change in direction of the pipe between two hangers. In order to avoid excessive overhang of the pipe between hangers H-1 and H-2, the length of pipe between these hangers is made less than


three fourths the suggested maximum span shown in the table on the previous page.

In considering the vertical section of the pipe on which H-3 and H-4 are shown, it should first be noted that this section of the pipe could be supported by one hanger rather than two as indicated. Two hangers will certainly provide greater stability than will a single hanger. Another deciding factor as to whether one hanger or a multiple hangers should be used is the strength of the supporting steel members of the structure. The use of two hangers will permit the total riser weight to be proportioned to two elevations of the structure, avoiding the concentration of all the riser load at one building elevation.

The locations for hangers H-5 and H-6 are governed by the suggested maximum span as well as the position of the concentrated valve weight. Consequently, H-6 has been located adjacent to the valve, and H-5 at a convenient location between the valve and the 12 inch riser.

The location of hanger H-7 will be determined by calculation to satisfy the condition that no pipe load is to be applied to terminal connection C. It is obvious that by moving the hanger along the 12 foot section of pipe, the amount of load on connection C will vary. One support location exists where the entire section will be "balanced", and the load at C equal to zero.

The calculations to determine the exact location of H-7 are shown in the section entitled "Hanger Load Calculation".

Consider next the 6 inch section of pipe on which H-8 and H-9 are shown. One of the requirements for this hanger problem is that the load at terminal connection B shall be zero. By placing H-9 directly over connection B, we can easily assure that this load will be zero. Also, this hanger location eliminates any bending stresses in the pipe that would be caused by the weight of the valve and vertical pipe at point B. If H-9 could not be located at this point due to structural limitations, it would be desirable to place it as close as possible to the vertical section of pipe to keep the cantilever effect to a minimum.

Hanger H-8 is located at a convenient distance between H-9 and the intersection of the 6 inch and 12 inch pipes. In this instance, the location of adequate building structure will determine the hanger position.

The methods involved in locating hangers for this problem are typical of those employed by the hanger engineer in the design of pipe supports. Although the individual piping configurations and structure layout will vary in practically every instance, the general methods outlined above will apply for any critical piping system.

HANGER LOAD CALCULATIONS

The thermal expansion of piping in modern high pressure and temperature installations makes it necessary for the designer to specify flexible supports, thereby requiring considerable thought to the calculation of hanger loads.

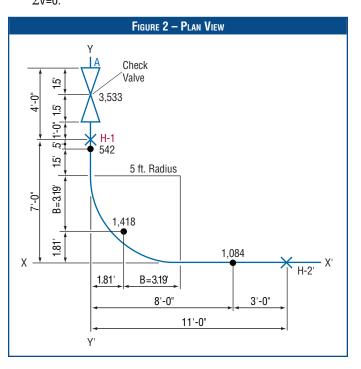
Turbine and boiler manufacturers are especially concerned about the pipe weight on their equipment and often specify that the loads at pipe connections shall be zero. The hanger designer must be certain that the loads on the equipment connections of a piping system do not exceed the limits specified by the equipment manufacturers.

The majority of supports for a high temperature system are of the spring type. The designer must work to a high degree of accuracy in determining the supporting force required at each hanger location to assure balanced support, in order to select the appropriate size and type of spring support.

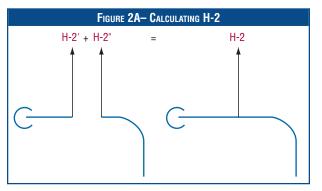
We have prepared a sample problem (Figure 1), in which all of the hangers except H-7 have been located. This illustration is limited to as few pipe sections as possible, but incorporates most of the problems encountered in hanger load calculations.

The calculation of loads for hangers involves dividing the system into convenient sections and isolating each section for study. A free body diagram of each section should be drawn to facilitate the calculations for each hanger load. Most of the free body diagrams presented here include as large a section of the piping system as is practical for a simple arithmetical solution to the problem.

The following solution is not intended to illustrate the only acceptable solution. Rather, it shows a composite of various accepted methods which, for the problem under consideration, produce a well balanced system. Of the approaches that could be made to the solution of any problem, there will be one method that will produce the best balanced system. Although the individual loads may vary, the total of all hanger loads would be the same in every case.


HANGER LOAD CALCULATIONS

The first step in the solution of a hanger load problem is to prepare a table of weights. The table for our sample problem (Figure 1) is:


TABLE	OF WEIGHTS -	- Sample Pro	BLEM (FIGURE 1)
Description	Weight	Insulation Weight (Ca-Si)	Total Weight	Weight Used In Calc.
12" Sch.160 Pipe	160.3 lb./ft.	20.4 lb./ft.	180.7 lb./ft.	180.7 lb./ft.
12" Sch. 160 L.R. Elbow	375 lb.	61.2 lb.	436.2 lb.	436 lb.
12" 1500 lb. Check Valve	3370 lb.	163.2 lb.	3533.2 lb.	3533 lb.
12" 1500 lb. Gate Valve	4650 lb.	163.2 lb.	4813.2 lb.	4813 lb.
12" 1500 lb. W.N. Flange	843 lb.	30.6 lb.	873.6 lb.	874 lb.
12" 5 Dia. Bend	1258 lb.	160.2 lb.	1418.2 lb.	1418 lb.
6" Sch. 160 Pipe	45.3 lb./ft.	11.5 lb./ft.	56.8 lb./ft.	56.8 lb./ft.
6" Sch. 160 90° L.R. Elbow	53 lb.	17.2 lb.	70.2 lb.	70 lb.
6" Sch. 160 45° Elbow	26 lb.	6.9 lb.	32.9 lb.	33 lb.
6" 1500 lb. Gate Valve	1595 lb.	80.5 lb.	1675.5 lb.	1676 lb.

Draw a free body diagram of the piping between point A and H-2, showing all supporting forces and all valve and pipe weights (Fig. 2). We will consider the loads and supporting forces between A, H-1 and H-2 acting about the axes x-x' and y-y', and apply the three equations:

$$\begin{split} \Sigma M_{x-x'} &= 0\\ \Sigma M_{y-y'} &= 0\\ \Sigma V &= 0. \end{split}$$

Note that the value for H-2 on this section of the piping system represents only a part of the total hanger force at H-2. For clarity, we have labeled this force H-2'. In the calculations for the next section of pipe beginning at H-2, we will call the hanger force at this point H-2".

Also, note that we have considered the weight of the 90° bend acting at the center of gravity of the bend. The distance B is determined from the Chart on page 10 which has been drawn for convenience:

B = Radius x .637, or 5 ft. x .637 = 3.185 ft.

STEP 1 - TAKING MOMENTS ABOUT AXIS Y-Y' (FIG. 2),

$$\begin{split} \Sigma M_{y\text{-}y'} &= 0, \ 1.81(1418) + 8(1\ 084) - 11(\text{H-2'}) = 0 \\ &2,567 + 8,672 = 11(\text{H-2'}) \\ &\text{H-2'} = 1,022 \text{ lb}. \end{split}$$

STEP II - TAKING MOMENTS ABOUT AXIS X-X' (FIG. 2),

$$\begin{split} \Sigma M_{x\text{-}x\text{-}} = 0, & 1.81(1418) + 6.5(542) - 7(\text{H-1}) + 9.5(3,533) - 11(\text{A}) = 0 \\ & 2,567 + 3,523 + 33,564 = 7(\text{H-1}) + 11(\text{A}) \\ & 39,564 = 7(\text{H-1}) + 11(\text{A}) \end{split}$$

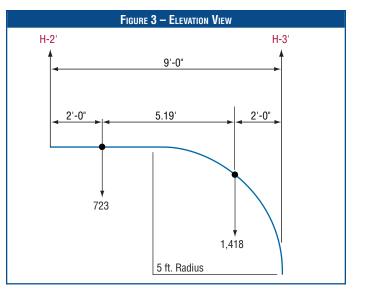
STEP III - ADDING FORCES $\Sigma V = 0$,

A + H-1 + H-2' - 3,533 - 542 - 1,418 - 1,084 = 0 A + H-1+ H-2' = 6,577 lb. Substituting the value H-2', calculated as 1,022 lb. in Step I, A + H-1 + 1,022 = 6,577 lb. A = 5,555 - H-1

STEP IV - SOLVING THE THREE EQUATIONS

(1) <mark>H-2</mark> ' = 1,022	Step I
(2) 39,654 = 7(<mark>H-1</mark>) + 11(A)	Step II
(3) A = 5,555 - (H-1)	Step III

Solving Equation (2) by subsitituting for A = 5555 - H-1, 39,654 = 7(H-1) + 11(5,555 - H-1)H-1 = 5,363 lb.


Substituting for H-1 in Equation 3,

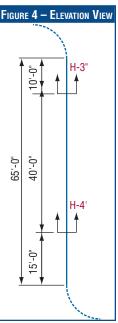
A = 5,555 lb - 5,363 lb.

A=192 lb.; which is below the allowable load at A of 500 lb.

Next, consider the section of pipe between H-2 and H-3 to determine the weight distribution, between these two points, of the 4ft. section of pipe and the five diameter bend.

$$\begin{split} \Sigma M_{\text{H-2"}} = 0, \quad & 2(723) + 7.19(1418) - 9(\text{H-3'}) = 0 \\ & \text{H-3'} = 1,293 \text{ lb.} \end{split}$$

$$\begin{split} \Sigma M_{\text{H-3'}} = 0, \quad & 1.81(1,418) + 7(723) - 9(\text{H-2"}) = 0 \\ & \text{H-2"} = 848 \text{ lb.} \end{split}$$
 $\begin{aligned} \text{H-2} = \text{H-2'} + \text{H-2"} = 1,022 \text{ lb.} + 848 \text{ lb.} = 1,870 \text{ lb.} \end{split}$


In the next free body diagram (Figure 4) consider the 65 ft. vertical section of the piping system to determine the supporting forces for H-3" and H-4'.

It is apparent that the combined forces

H-3" and H-4' equals 65 ft. x 180.7 lb./ft. Further, both H-3" and H-4' could be any value, provided the relationship

H-3" + H-4' = 11,746 lb.

is maintained. It is not recommended, however, to select arbitrary values for these two forces; instead, the load for each hanger should be such that the elevation of the pipe attachment is above the midpoint of the length of pipe supported by the hanger. Thus, the support will be located above the point where one could consider the weight of the pipe column acting, thereby avoiding a condition where the location of the support lends itself to the "tipping" tendency of the pipe when the support is located below this point.

Since there is 10 ft. of vertical pipe

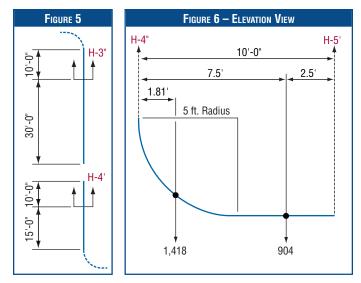
above H-3" and 40 ft. of pipe between H-3" and H-4', let H-3" support 10 ft. plus 30 ft. of pipe load:

H-3" = (10 ft. + 30 ft.)(180.7 lb./ft.) = 7,228 lb.

Since H-3 = H-3' + H-3" and H-3' = 1293 lb. (see Figure 3),

H-3=1,293 lb. + 7,228 lb. = 8,521 lb.

H-4' = (10 ft. + 15 ft.)(180.7 lb./ft.) = 4518 lb.

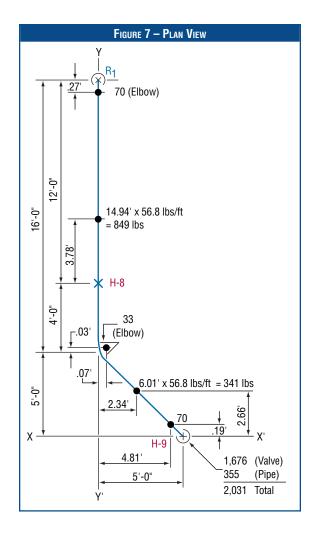

Consider the piping between H-4' and H-5 to determine the weight distribution of the 5 diameter bend and the 5 ft. of horizontal pipe:

$$\Sigma M_{H-5'} = 0$$

2 .5(904)+8.1 9(148)-10(H-4")=0 H-4"=1,387 lb. H-4 = H-4' + H-4"= 4518 lb. +1,387 lb. = 5,905 lb.

Anvil International, Piping & Pipe Hanger Design and Engineering

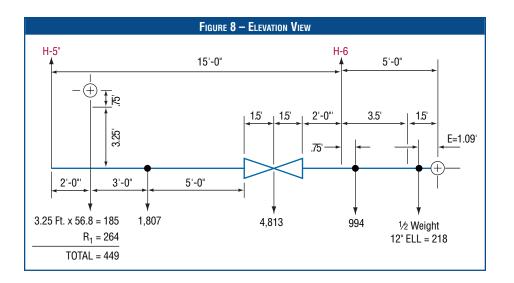
It is obvious that some portion of the weight of the 6 in. pipe between the 12 in. line and H-8 must be supported by H-5 and H-6. Therefore, before proceeding through H-5 and H-6, calculate this pipe weight load R_1 , and introduce it into the free body diagram for H-5 and H-6.

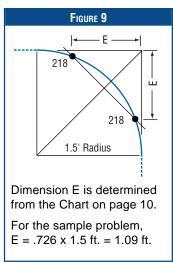

- $\Sigma M_{y-y}=0$.07(33) + 2.34(341) + 4.81(70)+5(2,031) 5(H-9) = 0 H-9 = 2,258 lb.
- $$\begin{split} \Sigma M_{x-x^{''}} = 0 & 19(70) + 2.66(341) + 5.03(33) 9(H-8) + 12.78(849) \\ & + 20.73(70) 21R_1 = 0 \\ & 13,387 = 9(H-8)21 \ (R_1) \end{split}$$

Since H-9 has been calculated as 2,258 lb.

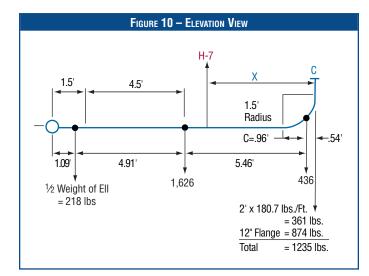
 $R_1 + H\text{-}8 = 3,394$ lb. - 2,258 lb. = 1,136 lb. H-8 = 1,136 lb. - R_1

Substituting this value for H-8 in the Equation


 $\begin{array}{l} 13,387 = 9(\text{H-8}) + 21\text{R}_1 \\ 13,387 = 9(1,136 \mbox{ lb. - R}_1) + 21(\text{R}_1) \\ \text{R}_1 = 264 \mbox{ lb.} \\ \text{H-8} = 1,136 \mbox{ - R}_1 = 1136 \mbox{ lb. - } 264 \mbox{ lb} = 872 \mbox{ lb.} \end{array}$



HANGER LOAD CALCULATIONS


The free body diagram shown in Figure 8 extends from H-5 through the 12 in. 90° elbow. This is intended to illustrate that the weight of the 90° elbow may be considered as supported on a beam which passes through the center of gravity of the elbow and rests on the extensions of the tangents as shown in Figure 9.

In Figure 8,

$$\begin{split} \Sigma M_{\text{H-5}^*} = 0, & 2(449) + 5(1,807) + 11.5(4,813) - 15(\text{H-6}) \\ & + 15.75(994) + 18.91(218) = 0 \\ & \text{H-6} = 5,671 \text{ lb.} \\ \Sigma M_{\text{H-6}} = 0, & 3.5(4,813) + 10(1,807) + 13(449) - .75(994) \\ & - 3.91(218) - 15(\text{H-5}^*) = 0 \end{split}$$

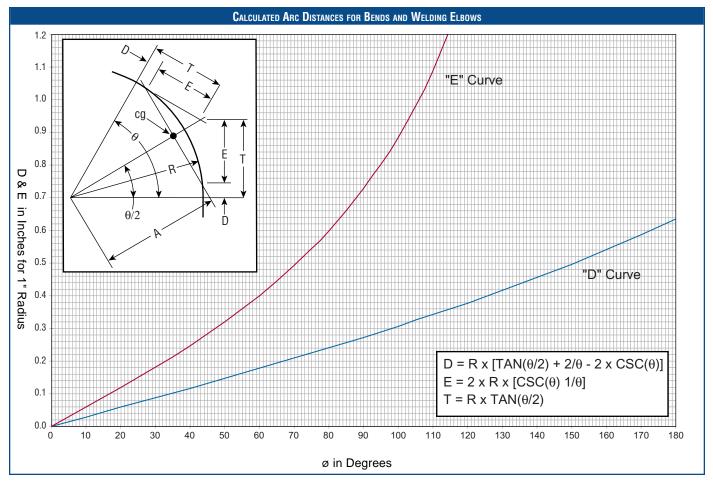
H-5"= 2,610 lb.

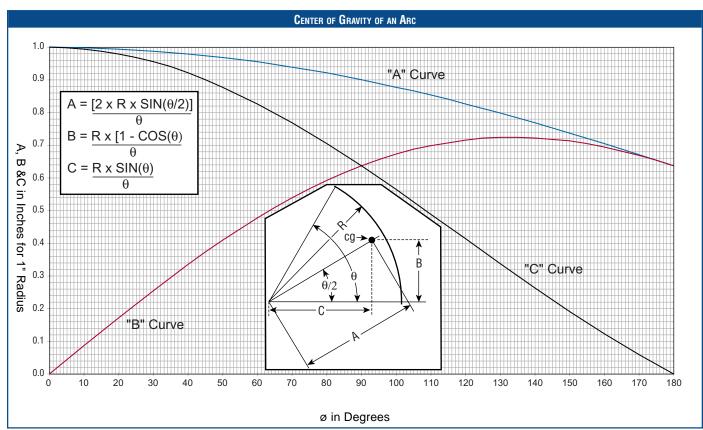
H-5= H-5'+H-5"= 935 lb. + 2,610 lb. = 3,545 lb.

The Figure 10 diagram shows a method for arriving at the location of H-7 which will allow zero load on connection C.

The value of H-7 is equal to the weight of the piping section:

H-7= 218 lb. + 1,626 lb. + 436 lb. + 1,235 lb. = 3,515 lb.


Solving for distance X,


$$\begin{split} \Sigma M_{\text{C}} &= 0, \\ &.54(436) - X(\text{H-7}) + 6(1,626) + 10.91(218) = 0 \\ &X(\text{H-7}) = 12,369 \\ &X(3515) = 12,369 \\ &X = 3.52 \text{ ft.} \end{split}$$

As a final step, check to ensure that the weight of the entire piping system is equal to the total supporting forces of the hangers plus the pipe weight load to be supported by the equipment connections:

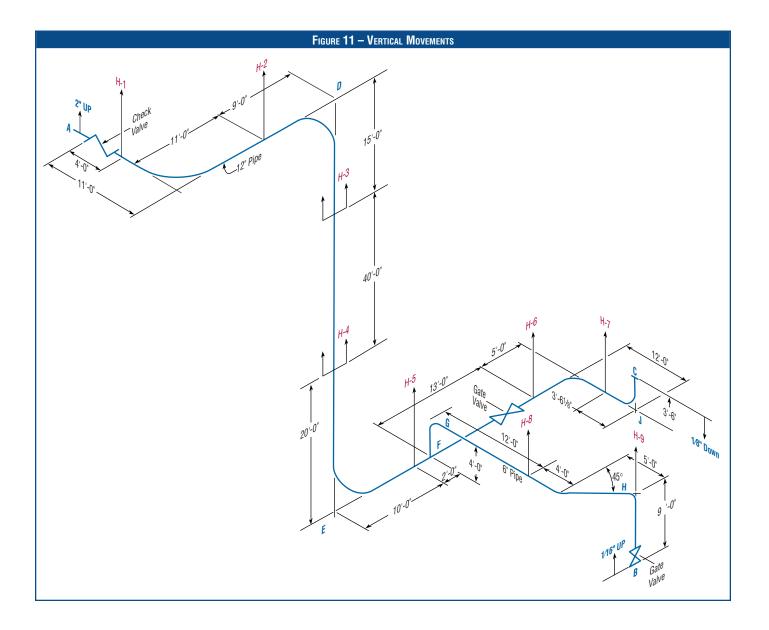
Summary Supp	ORT FORCES	
Piping System	Weight (Lbs)	Support Forces Plus Terminal Point Loads, Ib
109.5 ft. of 12" Pipe @ 180.7 lb./ft.	19,787	A = 192
(3) 12" 5 Dia. Bends @ 1418 lb.	4,254	H-1 = 5,363
(2) 12" 90° L.R. Ells @ 436 lb.	872	H-2 = 1,870
30.45 ft. of 6" Pipe @ 56.8 lb./ft.	1,730	H-3 = 8,521
(2) 6" 90° L.R. Ells @ 70 lb	140	H-4 = 5,905
(1) 6" 45° Ell @33 lb.	33	H-5 = 3545
(1) 12" 1,500 lb. Check Valve @ 3,533	3 lb. 3,533	H-6 = 5,671
(1) 12" 1,500 lb. Gate Valve @ 4,813	b. 4,813	H-7 = 3,515
(1) 12" 1,500 lb. WN Flange @ 874 lb	. 874	H-8 = 872
(1) 6" 1,500 lb. Gate Valve @ 1,676 lb	. 1,676	H-9 = 2,258
Total Weight of Piping System.	37,712	Total = 37,712

Anvil International, Piping & Pipe Hanger Design and Engineering

THERMAL MOVEMENTS

The next step in the design of pipe hangers involves the calculation of the thermal movements of the pipe at each hanger location. Based on the amount of vertical movement and the supporting force required, the engineer can most economically select the proper type hanger (i.e. Constant Support, Variable Spring, or Rigid Assembly).

The determination of piping movements to a high degree of accuracy necessitates a highly complicated study of the piping system. The simplified method shown here is one which gives satisfactory approximations of the piping movements.


Whenever differences occur between the approximations and actual movements, the approximation of the movement will always be the greater amount.

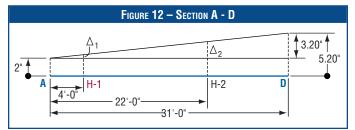
STEP 1 - CHART VERTICAL MOVEMENTS

Draw the piping system of Figure 1 and show all known vertical movements of the piping from its cold to hot, or operating, position (see Figure 11). These movements will include those supplied by the equipment manufacturers for the terminal point connections. For the illustrated problem, the following vertical movements are known:

Point A -- 2 in. up, cold to hot Point B -- $\frac{1}{16}$ in. up, cold to hot Point C -- $\frac{1}{6}$ in. down, cold to hot H-4 - 0 in., cold to hot

The operating temperature of the system is given as 1,050°F.

Referring to the thermal expansion table (page 63), the coefficient of expansion for low-chrome steel at 1,050°F is .0946 in.


Calculate the movements at points **D** and **E** by multiplying the coefficient of the expansion by the vertical distance of each point from the position of zero movement on the riser **D E**:

55 ft. x .0946 in./ft. = 5.2 in. up at D

20 ft. x .0946 in./ft. = 1.89i n. down at E

STEP 2 - SECTION A-D

Make a simple drawing of the piping between two adjacent points of known movement, extending the piping into a single plane as shown for the portion between A and D.

The vertical movement at any hanger location will be proportional to its distance from the end points:

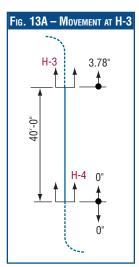
 $\Delta_1 = \frac{4}{31} \times 3.20 = .41$ in.

The vertical movement at H-1 = .41 in. + 2 in.

 Δ H-1 = 2.41 in. up

 $\Delta_2 = \frac{22}{31} \times 3.20 = 2.27$ in.

The vertical movement at H-2 = 2.27 in. + 2 in.

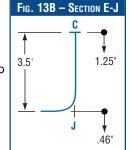

 $\Delta H-2 = 4.27$ in. up

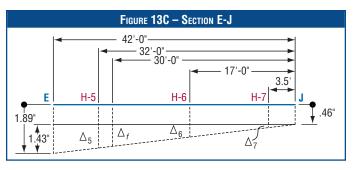
STEP 3 – MOVEMENT AT H-3

To calculate the vertical movement at H-3, multiply its distance from H-4 by the coefficient of expansion.

 Δ_{H-3} =40 ft. x .0946 in./ft. = 3.78 in.up

 $\Delta H-3 = 3.78$ in. up




STEP 4 - SECTION E-J

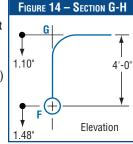
The next section with two points of known movement is the length E-J. Movement at E was calculated as 1.89 in. down. Movement at J is equal to the movement at the terminal point C (1/8 in. down) plus the amount of expansion of the leg C-J:

> $\Delta J = .125in. + (3.5ft. \times 0946in./ft)$ = .46in. down

12

 $\Delta_7 = 3.5/42 \times 1.43 = 0.12$ in. ∆H-7= 0.12in.+0.46in. =0.58in.down $\Delta_6 = 17/42 \times 1.43 = 0.58$ in. Δ H-6= 0.58in.+ 0.46in. = 1.04in. down Δ_5 = 32/42 x 1.43 = 1.09in.

 $\Delta_f = 30/42 \times 1.43 = 1.02$ in. ΔF =1.02in. + 0.46in. = 1.48in. down ∆**H-5**=1.09in.+ 0.46in.


= 1.55in. down

STEP 5

Draw the section G-H. The movement at G is equal to the movement at F minus the expansion of the leg G-F:

 $\Delta G = 1.48$ in. down - (4ft. x .0946in./ft) $\Delta G = 1.10$ in. down

9'-0'

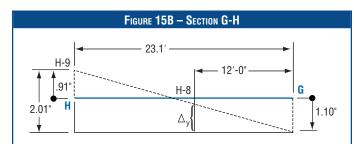
н

R

.91'

Elevation

0625


The movement at H is equal to the movement of the terminal point B ($\frac{1}{16}$ in. up) plus the expansion of the leg B-H:

 $\Delta H = .0625 in. up + (9ft. x .0946 in./ft)$ $\Delta H = 0.91 \text{in.up}$

Since H-9 is located at point H,

 $\Delta H-9 = \Delta H = 0.91$ in.up $\Delta_{\rm Y} = 12/23.1 \text{ x } 2.01 \text{ in.} = 1.04 \text{ in.}$

ΔH-8 = 1.10in. - 1.04in. = .06in. down

After calculating the movement at each hanger location it is often helpful, for easy reference when selecting the appropriate type hanger, to make a simple table of hanger movements like the one shown at the right.

Hanger No	. Movement
H-1	. 2.41" up
H-2	. 4.27" up
H-3	. 3.78" up
H-4	. 0"
H-5	. 1.55" down
	. 1.04" down
H-7	. 0.58" down
H-8	. 0.06" down
Н-9	. 0.91" up

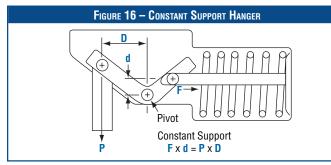
SELECTION OF THE PROPER HANGER

Selection of the appropriate type hanger for any given application is governed by the individual piping configuration and job requirements. Job specifications covering hanger types, however, are of necessity written in broad terms, and some emphasis is placed on the good judgement of the hanger engineer to ensure a satisfactory, yet economical, system.

The type of hanger assemblies are generally classified as follows:

- (1) Flexible hangers, which include hangers of the constant support and variable spring types.
- (2) Rigid hangers, such as rod hangers and stanchions.
- (3) Rollers

The location of anchors and restraints is not usually considered a responsibility of the hanger designer. Since it is necessary to determine the location of anchors and restraints before accurate and final stress analysis is possible, they are considered a part of piping design.

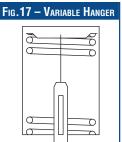

FLEXIBLE HANGERS

When a pipe line expands vertically as a result of thermal expansion it is necessary to provide flexible pipe supports which apply supporting force throughout the expansion and contraction cycle of the system.

There are two types of Flexible hangers:

- Variable Spring
- · Constant Support.

Constant Support hangers provide constant supporting force for piping throughout its full range of vertical expansion and contraction. This is accomplished through the use of a helical coil spring working in conjunction with a bell crank lever in such a way that the spring force times its distance to the lever pivot is always equal to the pipe load times its distance to the lever pivot.



Because of its constancy in supporting effect the Constant Support hanger is used where it is desirable to prevent pipe weight load transfer to connected equipment or adjacent hangers. Consequently, they are used generally for the support of critical piping systems.

Variable Spring hangers are used to support piping subject to vertical movement where Constant Supports are not required.

The inherent characteristic of a Variable Spring is such that its supporting force varies with spring deflection and spring scale. Therefore, vertical expansion of the piping causes a corresponding extension or compression of the spring and will

cause a change in the actual supporting effect of the hanger. The variation in supporting force is equal to the product of the amount of vertical expansion and the spring scale of the hanger. Since the pipe weight is the same during any condition, cold or operating, the variation in supporting force results in pipe weight transfer to equipment and adjacent hangers and consequently additional stresses in the

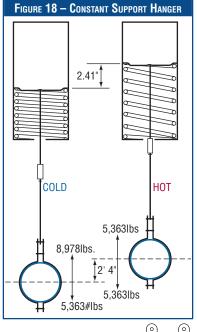
piping system. When Variable Spring hangers are used, the effect of this variation must be considered.

Variable Spring hangers are recommended for general use on non-critical piping systems and where vertical movement is of small magnitude on critical systems. Accepted practice is to limit the amount of supporting force variation to 25% for critical system applications on horizontal piping.

To illustrate the difference in the effect of using a Variable Spring as compared with a Constant Support hanger, refer to the sample problem shown in Figure 1, page 5.

The load for Hanger H-1 was calculated as 5,363 lb. The vertical movement at H-1 was calculated as 2.41 in. up, from the cold to the hot position of the pipe.

If a Variable Spring hanger were used at H-1, the effect of the variation in supporting force would have to be considered. The amount of variation can be determined by multiplying the spring scale in lbs./in. by the amount of vertical expansion in inches.


For example, if the Anvil Figure B-268 Variable Spring hanger were considered, the proper spring size would be number 16 which has a spring scale of 1,500 lbs./in. (For convenience, we have neglected the weight of the pipe clamp, rod and hex nuts. In designing hangers for an actual problem, the weight of components should be added to the calculated load.)

The amount of variation is 1,500 lb/in. x 2.41 in. = 3,615 lb. Standard practice is to calibrate the hanger in such a way that when the piping is at its hot position the supporting force of the

hanger is equal to the calculated load of the pipe. This means that the maximum variation in supporting force occurs when the piping is at its cold position, when stresses added to the piping as a result of variations in supporting forces are less critical.

The hot load for the variable spring, then is 5,363 lb.

As the direction of movement from cold to hot is upward, the cold load is 5,363 lb. + 3,615 lb., or 8,978 lb. Figure 18 shows the pipe and spring in both the cold and hot condition.

The purpose of the considerations given to the variation in supporting effect is apparent when you recall that the pipe weight does not change throughout its cold to hot cycle, while the supporting force varies. In Figure 18 (hot condition), the supporting force is equal to the pipe weight. However, in the cold condition, the supporting force is 8,978 lb. while the pipe weight is 5,363 lb. The hanger would exert an unbalanced force on the pipe equal to the amount of variation, or 3,615 lb. Most of this force would be imposed directly on connection A, where limits are established for the force which may be applied.

Further, safe piping design must be based on total pipe stress which includes bending, torsional, shear, longitudinal, and circumferential stresses. The addition of large forces resulting from spring variations can cause stresses which will greatly reduce the factor of safety of the entire spring system.

It is possible to reduce the amount of variability by using a variable spring which has a smaller spring scale, as an Anvil Figure 98 (Variable Spring Hanger).

The #16 Fig. 98 has a spring scale of 750 lb/in., one-half that of the B268. The amount of variability would be reduced by one-half, or $2.41 \times 750 = 1,808$ lb. However, it should be obvious that even this change in supporting force is too great for the critical location at H-1.

The appropriate hanger type for H-1 is a constant support hanger. This hanger would be calibrated to the calculated pipe weight. It would apply a constant supporting force, ensuring complete support of the pipe throughout the piping expansion.

That is, its supporting force would be 5,363 lb. when the pipe was at its cold position, and 5,363 lb. also when the pipe was at its hot position.

Hanger H-2 has a calculated load of 1,870 lb. The vertical movement at this location is 4.27in. up, cold to hot. Although the load may be considered slight, the magnitude of the vertical movement is great, and a considerable amount of supporting force change would occur if a variable spring were used.

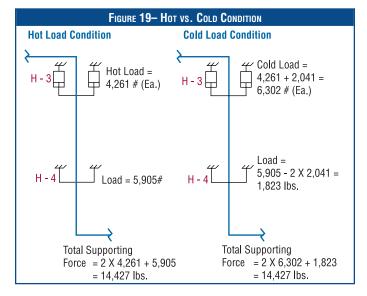
For example, the appropriate size variable spring is a #12 Figure 98 (the 4.27 in. travel is beyond the travel capacity of the Fig. B-268), which has a spring scale of 225 lb. in. The amount of variation equals 4.21 in. x 225 lb. in., or 947 lb.

This variation, expressed as a percentage, is

947 lb./1,870 lb. x 100, or greater than 50%.

Unless the hanger engineer were willing to perform some rather elaborate stress calculations to determine the effect of this variation, it would be safer to apply the accepted rule which limits variability to 25% for critical systems, and rule out the selection of a variable spring in favor of the constant support type hanger.

The vertical movement of the pipe at H-3 was calculated as 3.78 in. up, and the load as 8,521 lb.


In selecting the spring type for the hanger assembly, it should be recognized that any variation in supporting force will not produce bending stresses in the piping system. As the supporting forces at H-3 and H-4 are concurrent, no bending is produced as a result of spring variation at H-3. Rather, any supporting force variation will merely result in a corresponding load change at the rigid hanger H-4. The hanger type for H-3 may be variable spring type. It is only necessary that the variable spring have a travel capacity which is greater than the calculated pipe movement of 3.78 in.

Such a variable spring hanger is the Fig. 98, which has a working travel range of 5 inches.

As this assembly is a riser "trapeze" type, two spring units will be used, each supporting one-half the total load of 8,521 lb, or 4,261 lb. The appropriate size hanger is a #15 Fig. 98 with a spring scale of 540 lb. inch.

The amount of variation per spring is 3.78 in. x 540 lb./in., or 2,041 lb. The hot load setting for each hanger is equal to $\frac{1}{2}$ the calculated load, or 4,261 lb. As the direction of movement, cold to hot, is upward, the cold load setting will be 4,261 lb. + 2,041 lb. = 6,302 lb.

Figure 19 shows the supporting forces at H-3 and H-4 when the pipe is at its cold and its hot position. The weight of riser clamps, rods, etc., are not included, for convenience.

The design load for H-3 should allow for a calculated cold load of 6,302 lb. x 2 = 12,604 lb.

The load at rigid hanger H-4 is 1,823 lb. cold, 5,905 lb. hot. All hanger components should be designed for the larger load.

Variation in supporting forces at hangers H-5, H-6, H-7 and H-9 will produce reactions at connections B and C. As one of the requirements of the problem under study is that weight loads at B and C shall be zero, these hangers must be of the constant support type.

Although it holds true that at H-8 any hanger force variation will cause weight loads at B and C, the load and movement at this hanger location are so slight that the spring variation effect can be considered negligible. The load was calculated as 872 lb, the movement as .06 in. down.

The variability of a #8 Fig. B-268 is .06 in. x 150 lb/in., or 9 lb. For practical purposes, a 9 lb. change in supporting force could be neglected and a variable spring selected for Hanger H-8.

The selection of hanger types for supports H-1 through H-9 in the sample problem illustrates the many considerations which should be given in selecting the appropriate flexible hanger at each support location for any major piping system.

In selecting flexible hanger types the engineer should consider that:

- Wherever constant support hangers are used, the supporting force equals the pipe weight throughout its entire expansion cycle, and no pipe weight reactions are imposed at equipment connections and anchors.
- Wherever variable spring hangers are used, the engineer must check to assure that the total variation in supporting effect does not result in harmful stresses and forces within the piping system.
- Where piping stresses and reactions are known to be close to allowable, the simplest and, in the long run, most economical type of flexible support is obviously the constant support hanger.
- Where piping stresses and end reactions are known to be low, variable spring hangers can be used satisfactorily for most non-critical piping support, and for the support of critical systems where vertical movements are of small magnitude.

RIGID HANGERS

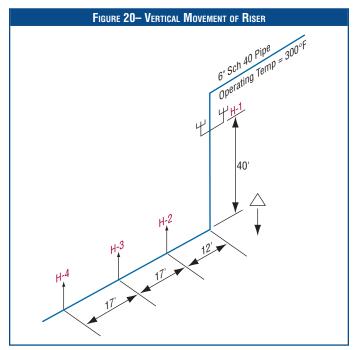
Rigid hangers are normally used at locations where no vertical movement of the piping occurs.

The design considerations for a rigid hanger are pipe temperature, for selection of appropriate pipe clamp material, and load, for selection of components suitable for the pipe weights involved.

Pipe clamp material is usually carbon steel for temperatures up to 750° F, and alloy steel for temperatures above 750° F. Malleable iron pipe clamps may be used at temperatures up to 450° F.

For piping systems of low operating temperature, where vertical expansion is usually not a factor, the rigid hanger assembly components are selected and designed on the basis of calculated or approximated loads.

In some instances, however, the rigid hanger is used in a manner where it does more than merely support the pipe weight, but acts as a restraint against vertical piping movements. It is in these cases that the engineer should exercise care in the location of the rigid hanger and the design load he uses in the selection of components.


The location and effect of any restraint, guide or anchor on a high temperature and high pressure system is of necessity a function of the stress analyst. The indiscriminate placing of a restraining device on a piping system could alter the piping stresses and end reactions to a serious degree, changing a conservatively designed system into one which exceeds the limits of good design practices.

The hanger engineer, though not as well acquainted with the total stress picture of a piping system as is the stress analyst, must usually decide if the problem is of this "critical" nature, or whether the system under study is such that the effect of adding a restraint for convenience will be negligible. The decision is based on the factors of operating temperature, operating pressure, and the configuration of the system. Recognizing that pipe design is based on total pipe stress, one must determine whether the stresses produced by the addition of a rigid hanger, or vertical restraint, are critical.

This article is not intended to present a short-cut method for the stress analysis of a piping system. In any instance where it is not obvious to an engineer that he is dealing with a noncritical case, the problem should either be reviewed formally from a total stress view-point, or the decision to use a rigid hanger should be changed and a flexible support be utilized.

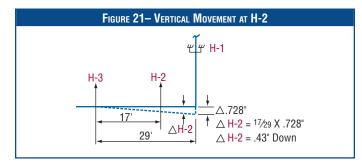
This article is intended to provide the engineer with a simple and quick method of deciding how he can most economically treat vertical thermal movement on a long, horizontal section of a non-critical piping system. Often, the problem can be expressed in the simple terms of whether he will be able to use a rigid hanger rather than a flexible hanger without producing obviously harmful stresses in the system.

Consider a simple example, shown in Figure 20, where the hanger engineer is confronted with the problem of how to best treat vertical movement resulting from thermal expansion of the riser. The horizontal sections at both the top and the bottom of the riser are of any hangers H-2, H-3, H-4, etc., should be spring hangers and which will be rigid hangers (vertical restraints in this instance). The solution must satisfy a condition that the bending stress produced by the restraining action of the hanger is no greater than some acceptable amount, say, in this instance, 10,000 psi.

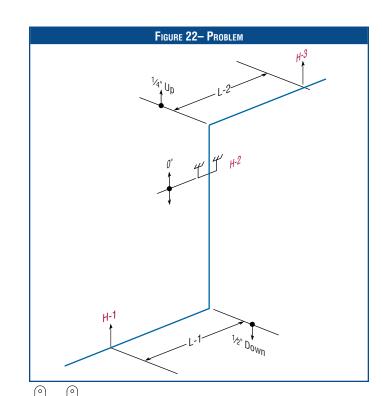
For an operating temperature of 300°F, the expansion for carbon steel pipe is .0182in. per foot.

 Δ = 40ft. x .0182in./ft. = .728in. down.

(see "Thermal Movement Calculations", page 11.)


From the Chart on Page 67 using values of 6 in. pipe and a deflection of $\frac{3}{4}$ in., read 17.5 ft. This is the minimum distance from the riser where the first rigid hanger may be placed for this problem.

If the locations of the hangers are fixed, as they are for this case, then H-2 must be a spring hanger assembly because it is located only 12 ft. from the riser. Therefore, the nearest rigid hanger will be hanger H-3, located 29 ft. from the riser.


The amount of vertical movement at hanger H-2 will be proportional to its distance between H-3 and the riser, and can be approximated as shown in Figure 21:

Thus, H-2 would be selected as a variable spring hanger for .43 in. of downward vertical movement, and H-3 would be designed as a rigid hanger.

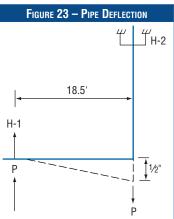
In the above problem the hanger locations were fixed. If this were not the case, and the hangers could be placed at any convenient location subject to usual hanger span limits, then H-2 would be placed at any distance 17.5 ft. or more from the riser. This would satisfy the condition that a maximum bending stress of 10,000 psi would result from the restraining effect of the hanger. If the allowable effect was given as a higher stress, then the hanger could be placed closer to the riser; if lower, the nearest rigid hanger would be placed a greater distance from the riser.

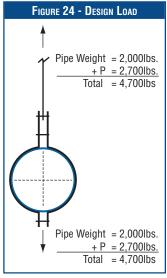
If the hanger were located closer to the riser, a greater restraining force would be applied to the pipe by the hanger. As the location is changed to a greater distance from the riser, a lesser force is required. As illustrated in the following sample problem, this force can be an important factor in the design load of the hanger.

16

PROBLEM

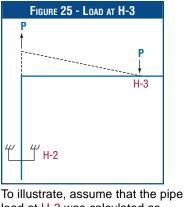
Given 10 in. Sch. 40 pipe, and allowable bending stress of 10,000 psi produced by the restraining effect of the hangers, Find:

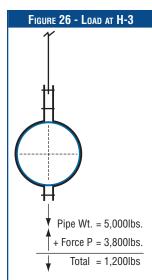

- (1) L-1 and L-2 the distances to the nearest rigid hangers H-1 and H-3, see Figure 22.
- (2) The forces which the hangers must apply to the pipe to allow the $\frac{1}{4}$ in. and $\frac{1}{2}$ in.
- deflections resulting from the thermal expansion of the vertical pipe.


Solution:

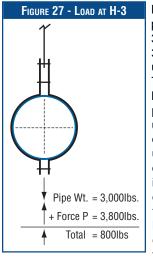
From the Chart on page 67 using values of $\frac{1}{2}$ in. deflection and 10 in. pipe, read L-1, as 18.5 ft., the distance from the riser to the rigid hanger H-1. Thus, at a distance of 18.5 ft., the hanger will exert sufficient force to deflect the pipe $\frac{1}{2}$ in., producing 10,000 psi bending stress. (See Fig. 23).

Use the Chart on page 69 to find the value of force P. For a pipe size of 10 in. and a span of 18.5ft., read P as approximately 2,700 lb.


This force is applied by the pipe hanger H-1, and, therefore, must be included in the design load for H-1. In this instance, where the piping movement is in the downward direction, the force P is added to the pipe weight to be supported by Hanger H-1. If the pipe weight for H-1 were calculated as 2,000 lb., then the design load for the hanger components is 2,000 lb.+2,700 lb., or 4,700 lb., as shown in Figure 24.

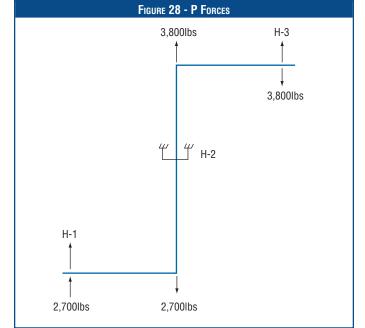


To solve for L-2 refer to the Chart on page 67 and, using values of $\frac{1}{4}$ in. deflection and 10in. pipe, read L-2 as 13 ft., the distance to the proposed rigid hanger H-3. As discussed for H1 of this problem, hanger H-3 must apply sufficient force to restrain the pipe vertically against the force resulting from the thermal expansion of the vertical piping above H-2.


The force P which is required at H-3 can be determined from the Chart on page 69. Using values for I0 in. pipe and a 13 ft. span, P is approximately 3,800 lb. Since this force restrains the upward movement of the pipe, it should be checked against the pipe weight load to assure that the hanger assembly can exert a force equal to the difference of the force P and the pipe weight load.

lo illustrate, assume that the pipe load at H-3 was calculated as 5,000 lb, The difference between the pipe weight and the force P would equal 5,000 lb. - 3,800 lb. = 1200 lb., as shown in Figure 26.

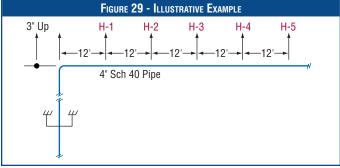
The design load used for hanger H-3 should equal 5,000 lb, or pipe weight only in this instance. Where the vertical movement is in the upward direction, and the force P approaches the pipe weight load, the rigid hanger will tend to unload. This is, as the pipe expands upward the net force applied to the pipe by the hanger becomes less. If the force P becomes greater than the pipe weight at the hanger, the net force on the hanger becomes compressive rather than tensile. When the system has expanded its full amount, the pipe will tend to lift from the hanger, and the supporting effect of the hanger will be zero.


If the pipe weight for the sample problem had been calculated as 3,000 lb., then the net force is 3,000 lb. - 3,800 lb., or 8,00 lb. upward, as shown in Figure 27. The hanger, in this case, would not be considered as a support for the pipe, but a vertical restraint against upward movement, Therefore, either a greater span should be used in order to reduce the force P, or a spring hanger should be used if L-2 is maintained as 13 ft., in order to provide support and allow the piping to move upward at this hanger location. Using the values of L-1 and L-2, as determined in the original problem, the forces P

at each hanger are as shown in Figure 28.

The forces at H-1 and H-3 have been discussed in some detail, but it should also be noted that the design load for H-2 should include these forces as well. For this example, the design load for H-2 equals the pipe weight plus 3,800 lb., minus 2,700 lb, or design load = pipe weight load + 1,100 lb.

In the preceding problems, the allowable bending stress due to the restraining effect of the hanger was given as 10,000 psi. This allowable stress will, of course, vary with the individual case.


Where the stress is other than 10,000 psi, use the Chart on page 67 to read the minimum span, and multiply the span in

feet by the factor indicated in the Chart below for the specific stress.

Correction Factor for Stresses Other Than 10,000 PSI							
For Bending Stress (PSI) Of: 2,000	Multiply Length By: 2.24						
3,000	1.83						
4,000	1.58						
5,000	1.41						
6,000	1.29						
8,000	1.12						
10,000	1.00						
12,000	.91						
15,000	.82						
20,000	.71						

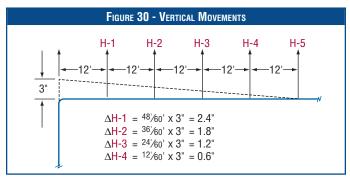
ILLUSTRATIVE EXAMPLE

Given:

4in. Sch. 40 pipe, Δ = 3in., and 3,000 psi maximum bending stress through the restraining effect of the first rigid hanger.

Find:

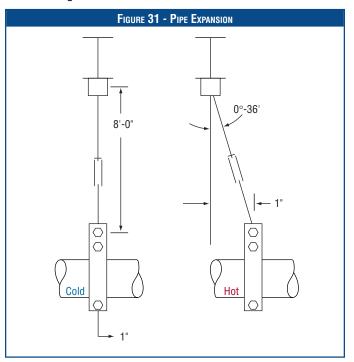
L, the distance from the riser to the first rigid support.



From the Chart on page 67 using values of 4 in. pipe and 3 in. deflection, read a span of 29 ft. This span is based on a stress of 10,000 psi, and, to correct for 3,000 psi, refer to the correction factor chart on the previous page. For a stress of 3,000 psi, the correction factor for spans is 1.83. Multiplying 29 ft. by 1.83, the span for 4 in. pipe with 3 in. deflection at 3,000 psi is 29 x 1.83, or 53 ft. Thus, L, the minimum distance to the first rigid hanger, is 53 ft.

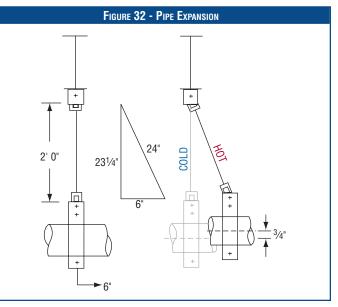
The first rigid hanger in the above problem will be H-5, located 60 ft. from the riser. The force P required to restrain the piping vertically can be determined from the Chart on page 69 as about 83 lb., using values of 4 in. pipe and a span of 60 ft. The effect of this force will be considered negligible for this problem.

The vertical movements at hanger locations between H-5 and the riser are as shown in Figure 30.

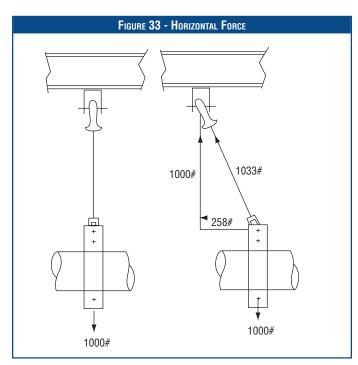

The above results are based on an approximate but conservative analysis. Whenever the appropriate charts are used, the values listed should assist the engineer in arriving at an economical, safe design for any rigid hanger assembly.

The examples described represent situations not frequently encountered in pipe support design, but do point out that the rigid hanger in some instances is more than a simple pipe support, and that good design must allow for all applicable conditions.

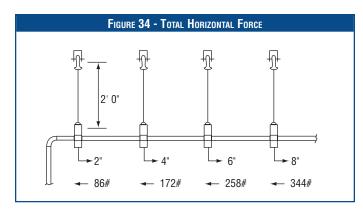
ROLLERS


The pipe attachment and structural attachment of a hanger assembly should be such that they will permit the hanger rod to swing to allow for lateral movement of the piping where horizontal pipe expansion is anticipated.

In some instances, where piping expansion is slight and hanger rods are long, the swing permitted by the pivoting of the rod at the upper and lower connections is sufficient, as shown in Figure 31.

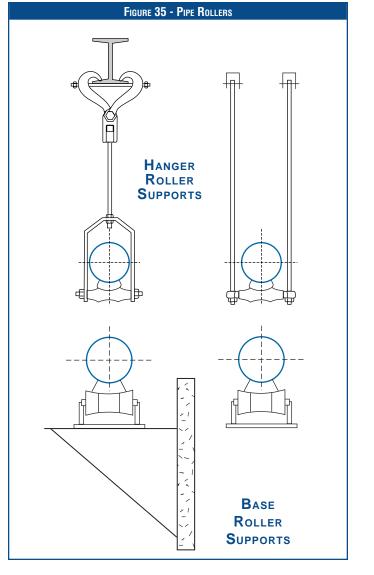

In other instances the angularity caused by the horizontal piping movements can appreciably effect the position of the piping system, and can cause harmful horizontal forces within the piping system.

In Figure 32, note that, because of the large axial piping movement and short hanger rod, the pipe is pulled ³/₄ in. off elevation when it expands 6 in. horizontally.



The condition shown in Figure 32 also places a horizontal force component into the piping system. For example, assume a pipe weight of 1000 lb. for the above hanger, as in Figure 33.

The 258 lb. horizontal force by itself may not be of great consequence, but where there is a series of hangers located on the same long section of pipe, the effect of the total horizontal force can be serious. (See Figure 34)


Total horizontal force= 86 + 172 + 258 + 344=860 lb

Certainly, for any system subject to horizontal expansion, the rod angularity from the vertical will result in a horizontal force component. The point where this angularity becomes critical cannot be defined for every case, but accepted practice is to limit the swing from the vertical to 4°.

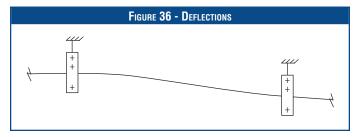
Where this angle is greater than 4° , a pipe roller should be considered.

Pipe roller supports are of two basic types: those which attach to overhead structure, and those which are placed beneath the pipe as base supports (see Figure 35).

It should be noted that where rollers are required, the pipe operating temperatures usually are sufficiently high that pipe insulation is used to reduce heat loss and for personnel protection. In these cases a pipe covering protection saddle should be used in conjunction with the rollers to keep the insulation from crushing.

Where the piping is not insulated, the pipe will rest directly on the roller. This is common practice for the support of long transmission lines where the gas or fluid transported is not of elevated operating temperatures, but where the pipe run is subject to some change in ambient temperature, as from summer to winter variances.

For example, a pipe line 300 ft. long subject to ambient changes from 70° F to 110° F expands only .00306 in./ft. from the low to high temperature. Multiplied by 300 ft., however, the total axial expansion is 300 ft. x .00306 in./ft., or .918 in.


In instances of this nature, rollers will be used, but the pipe covering protection saddles will not be required.

For economy in the support of low pressure, low temperature systems, and long outdoor transmission lines, hanger spans may be based on the allowable total stresses of the pipe and the amount of allowable deflection between supports.

In steam lines with long spans the deflection caused by the weight of the pipe may be large enough to cause an accumulation of condensate at the low points of the line. Water lines, unless properly drained, can be damaged by freezing. These conditions can be avoided by erecting the line with a downward pitch in such a manner that succeeding supports are lower than the points of maximum deflection in preceding spans as shown in Figure 36.

The stresses indicated in the Chart on page 65 and the Chart on page 66 are bending stresses resulting from the weight of the pipe between supports. It should be realized that this

stress must be considered with other stresses in the piping, such as those due to the pressure of the fluid within the pipe, the bending and torsional stresses resulting from thermal expansion, etc., in order to design the system for total allowable stress.

The stresses and deflections indicated in the Charts on pages 64, 65 and 66 are based on a single span of pipe with free ends, and make no allowances for concentrated loads of valves, flanges, etc., between hangers.

The stress and deflection values shown in the Charts on pages 64, 65 and 66 are based on a free end beam formula and reflect a conservative analysis of the piping. Actually, the pipe line is a continuous structure partially restrained by the pipe supports, and the true stress and deflection values lie between those calculated for the free end beam and a fully restrained structure.

The deflections and bending stress values indicated represent safe values for any schedule pipe from Sch. 10 to XS pipe.

For fluids other than water, the bending stress can be found by first finding the added stress caused by water from the Charts on pages 65 and 66 and multiplying by the specific gravity of the fluid. Add this to the stress value of the pipe empty.

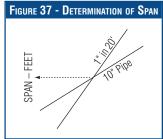
For lines which are thickly insulated, find the deflection or bending stress resulting from the weight of pipe bare and multiply by a ratio of the weight of pipe per foot plus insulation to the weight of bare pipe per foot.

To illustrate the use of the deflection and stress charts, consider the following examples:

PROBLEM:

Find: The maximum economical hanger spacing for a 10 in. non-insulated steam transmission line, 1,200 ft. long, which will provide sufficient drainage with minimum deflection within an allowable bending stress limit of 10,000 psi. The maximum difference in elevations of the ends of the line is 5ft.

SOLUTION:


Maximum Slope = (5 ft. x 12 in./ft.) = 1 in./20ft.1,200ft.

From the Chart on page 64 find the intersection of the Curve 1 in. in 20 ft., and 10 in. nominal pipe size. Read left to find the allowable pipe span of 40 ft.

From the Chart on page 65, the bending stress for 10 in. pipe with a support span of 40 ft. is 3,250 psi, which is below the allowable 10,000 psi.

Answer:

Span = 40 ft .

PROBLEM:

Find: The maximum economical spacing to provide sufficient drainage for an 8 in. water filled line 600 ft. long. The allowable bending stress is 6,000 psi, and the difference in elevations between the ends of the pipe line is 5 ft.

SOLUTION:

Maximum Slope =
$$\frac{(5 \text{ ft. x l2 in./ft.})}{600 \text{ ft.}}$$
 = 1in./10ft.

From the Chart on page 64, find the intersection of the curve 1 in. in 10 ft. and 8 in. pipe, and read left to a span of 43 ft.

From the Chart on page 66, for an 8 in. water filled line with a support span of 43 ft., the bending stress is 8,300 psi, which is greater than the allowable 6,000 psi. Therefore, the maximum span should be based on the allowable bending stress of 6,000 psi.

Referring to the Chart on page 66, the maximum span for 8 in. pipe and an allowable bending stress of 6000 psi is 37 ft.

ANSWER:

Span = 37 ft

PROBLEM:

Find: The maximum spacing and slope for a 6 in. water filled line where the allowable bending stress is 10,000 psi. The difference in the elevations of the ends of the system is not limited.

From the Chart on page 66, the maximum span for a 6 in. water filled line with an allowable bending stress of 10,000 psi is 42 ft.

On the Chart on page 64 read from the 42 foot span value to the 6in. pipe curve. Interpolating between the slope curves 1 in. in 10 ft. and 1 in. in 5 ft., read the slope 1 in. in 6 ft.

ANSWER:

Span = 42 ft

Pipe is sloped at 1 in. in 6 ft. (A difference in elevation of 7 in. between supports.)

TYPICAL PIPE HANGER SPECIFICATION

1. SCOPE

This specification shall apply for the design and fabrication of all hangers, supports, anchors, and guides. Where piping design is such that exceptions to this specification are necessary, the particular system will be identified, and the exceptions clearly listed through an addendum which will be made a part of the specification.

2. DESIGN

- (a) All supports and parts shall conform to the latest requirements of the ASME Code for Pressure Piping B31.1.0, and MSS Standard Practice SP-58, SP-69, SP-89 and SP-90 except as supplemented or modified by the requirements of this specification.
- (b) Designs generally accepted as exemplifying good engineering practice, using stock or production parts, shall be utilized wherever possible.
- (c) Accurate weight balance calculations shall be made to determine the required supporting force at each hanger location and the pipe weight load at each equipment connection.
- (d) Pipe hangers shall be capable of supporting the pipe in all conditions of operation. They shall allow free expansion and contraction of the piping, and prevent excessive stress resulting from transferred weight being introduced into the or connected equipment.
- (e) Wherever possible, pipe attachments for horizontal piping shall be pipe clamps.
- (f) For critical high-temperature piping, at hanger locations where the vertical movement of the piping is ¹/₂ in. or more, or where it is necessary to avoid the transfer of load to adjacent hangers or connected equipment, pipe hangers shall be an approved constant support design, as Anvil Fig. 80-V and Fig.81-H Where transfer of load to adjacent hangers or equipment is not critical, and where the vertical movement of the piping is less than ¹/₂ in., variable spring hangers may be used, provided the variation in supporting effect does not exceed 25% of the calculated piping load through its total vertical travel.
- (g) The total travel for constant support hangers will be equal to actual travel plus 20%. In no case will the difference between actual and total travel be less than 1 in. The constant support hanger will have travel scales on both sides of the support frame to accommodate inspections.
- (h) Each constant support hanger should be individually calibrated before shipment to support the exact loads specified. The calibration record of each constant support shall be maintained for a period of 20 years to assist the customer in any redesign of the piping system. Witness marks shall be stamped on the Load Adjustment Scale to establish factory calibration reference point.

- (i) In addition to the requirements of ASTM A-125 all alloy springs shall be shot peened and examined by magnetic particle. The spring rate tolerance shall be ±5%. All three critical parameters (free height, spring rate and loaded height) of spring coils must be purchased with a C.M.T.R. and be of domestic manufacture.
- (j) Constant supports should have a wide range of load adjustability. No less than 10% of this adjustability should be provided either side of the calibrated load for plus or minus field adjustment. Load adjustment scale shall be provided to aid the field in accurate adjustment of loads. Additionally, the constant support should be designed so that the load adjustments can be made without use of special tools and not have an impact on the travel capabilities of the supports.
- (k) Constant supports shall be furnished with travel stops which shall prevent upward and downward movement of the hanger. The travel stops will be factory installed so that the hanger level is at the "cold" position. The travel stops will be of such design as to permit future re-engagement, even in the event the lever is at a position other than "cold", without having to make hanger adjustments.
- (I) For non-critical, low temperature systems, where vertical movements up to 2 in. are anticipated, an approved pre-compressed variable spring design similar to Anvil Fig. B268 may be used. Where the vertical movement is greater than 2 in., a variable spring hanger similar to Anvil Fig. 98 may be used. Where movements are of a small magnitude, spring hangers similar to Anvil Fig. 82 may be used.
- (m) Each variable spring shall be individually calibrated at the factory and furnished with travel stops. Spring coils must be square to within 1° to insure proper alignment. Each spring coil must be purchased with a C.M.T.R. and be of domestic manufacture.
- (n) All rigid rod hangers shall provide a means of vertical adjustment after erection.
- (o) Where the piping system is subject to shock loads, such as seismic disturbances or thrusts imposed by the actuation of safety valves, hanger design shall include provisions for rigid restraints or shock absorbing devices of approved design, such as Anvil Fig. 200 shock and sway suppressor.
- (p) Selection of vibration control devices shall not be part of the standard hanger contract. If vibration is encountered after the piping system is in operation, appropriate vibration control equipment shall be installed.
- (q) Hanger rods shall be subject to tensile loading only (see Table III, Page 37). At hanger locations where lateral or axial movement is anticipated, suitable linkage shall be provided to permit swing.

- (r) Where horizontal piping movements are greater than ½ in. and where as the hanger rod angularity from the vertical is less than or equal to 4° from the cold to hot position of the pipe, the hanger pipe and structural attachments shall be offset in such manner that the rod is vertical in the hot position. When the hanger rod angularity is greater than 4° from vertical, then structural attachment will be offset so that at no point will the rod angularity exceed 4° from vertical.
- (s) Hangers shall be spaced in accordance with Tables I and II (Shown below).
- (t) Where practical, riser piping shall be supported independently of the connected horizontal piping. Pipe support attachments to the riser piping shall be riser clamp lugs. Welded attachments shall be of material comparable to that of the pipe, and designed in accordance with governing codes.
- (u) Supports, guides, and anchors shall be so designed that excessive heat will not be transmitted to the building steel. The temperature of supporting parts shall be based on a temperature gradient of 100°F per 1 in. distance from the outside surface of the pipe.
- (v) Hanger components shall not be used for purposes other than for which they were designed. They shall not be used for rigging and erection purposes.
- (w) Hydraulic Snubbers The hydraulic units shall have a temperature stable control valve. The valve shall provide a locking and bleed rate velocity that provides for tamper proof settings. The fluid system shall utilize a silicone fluid with proven compatible seals made of approved compounds. The reservoir shall provide a fluid level indicator for exact reading of reservoir fluid level in any snubber orientation.

The valve device shall offer a minimum amount of resistance to thermal movement. Any shock force shall cause the suppressor valve to close. With the suppressor valve closed the fluid flow shall essentially stop, thereby causing the unit to resist and absorb the disturbing forces. After the disturbing forces subside the suppressor valve shall open again to allow free thermal movement of the piping. The suppressor shall have a means of regulating the amount of movement under shock conditions up to the design load for faulted conditions without release of fluid. The suppressor design shall include a fluid bleed system to assure continued free thermal movement after the shock force subsides. The suppressor shall have a hard surfaced, corrosion resistant piston rod supported by a bronze rod bushing. The assembly shall have self-aligning lubricated bushings and shall be designed so that it is capable of exerting the required force in tension and compression, utilizing the distance.

(y) Paint — Variable spring and constant support units will be furnished prime painted. All other material will receive one shop coat of a red chromate primer meeting the requirements of Federal Specification TT-P-636. For corrosive conditions, hangers will be galvanized or painted with Garbo-Zinc #11.

3. HANGER DESIGN SERVICE

Hangers for piping $2\frac{1}{2}$ in. and larger, and all spring support assemblies, shall be completely engineered.

- (a) Engineered hanger assemblies shall be detailed on 8½ in. x 11 in. sheets. Each sketch will include a location plan showing the location of the hanger in relation to columns of equipment. Each sketch will include an exact bill of material for the component parts making up each assembly.
- (b) Each engineered hanger assembly will be individually bundled and tagged as far as practical, ready for installation. Hanger material for piping 2 in. and smaller shall be shipped as loose material, identified by piping system only. A piping drawing marked with approximate hanger locations and types, and hanger sketches showing typical support arrangements will be furnished.
- (c) Hanger inspections shall be performed in accordance with MSS-SP89 (Section 7.7) and ASME B31.1 (Appendix V).

TABLE I																			
Maximum Horizaontal Spacing Between Pipe Supports for Standard Weight Steel Pipe																			
Nom. Pipe Size (in)>	¹ /2	³ /4	1	1 ¹ / ₂	2	2 ¹ / ₂	3	3 ¹ / ₂	4	5	6	8	10	12	14	16	18	20	24
Max Span, Water Serv. (ft.)>	7	7	7	9	10	11	12	13	14	16	17	19	22	23	24	27	28	30	32
Max Span, Vapor Serv. (ft.) —>	8	9	9	12	13	14	15	16	17	19	21	24	26	30	32	35	37	39	42

Table II Maximum Horizontal Spacing Between Copper Tubing Supports										
Nom. Pipe Size (in)>	¹ /2	³ /4		1 1/4			2 ¹ /2		3 ¹ / ₂	4
Max Span, Water Serv. (ft.) —>	5	5	6	7	8	8	9	10	11	12
Max Span, Vapor Serv. (ft.) —>	6	7	8	9	10	11	13	14	15	16

FIELD ENGINEERING WALKDOWNS

Critical piping systems shall be observed visually, as frequently as deemed necessary, and any unusual conditions shall be brought to the attention of the operating company. Only qualified and trained personnel shall be utilized for these observations. Observations shall include determination of interferences with or from other piping or equipment, vibrations, and general condition of the supports, hangers, guides, anchors, supplementary steel, and attachments, etc.

Hanger position scale readings of variable and constant support hangers shall be determined periodically. It is recommended that readings be obtained while the piping is in its fully hot position, and if practical, when the system is reasonably cool or cold sometime during the year as permitted by plant operation. Pipe temperature at time of reading hangers shall be recorded.

Variable and constant support hangers, vibration control devices, shock suppressors, dampeners, slide supports and rigid rod hangers shall be maintained in accordance with the limits specified by the manufacturers and designers. Maintenance of these items shall include, but not necessarily be limited to, cleaning, lubrication and corrosion protection.

Pipe location readings and travel scale readings of variable and constant support hangers shall be recorded on permanent log sheets in such a manner that will be simple to interpret. Records of settings of all hangers shall be made before the original commercial operation of the plant and again after startup.

After visually observing piping, hangers, and supports, repairs and/or modifications are to be carried out by qualified maintenance personnel for all of the following items:

- A. Excessively corroded hangers and other support components
- B. Broken springs or any hardware item which is part of the complete hanger or support assembly
- C. Excessive piping vibration; valve operator shaking or movements
- D. Piping interferences
- E. Excessive piping deflection which may require the installation of spring units having a greater travel range
- F. Pipe sagging which may require hanger adjustment or the reanalysis and redesign of the support system
- G. Hanger unit riding at either the top or the bottom of the available travel
- H. Need for adjustment of hanger load carrying capacity
- I. Need for adjustments of hanger rods or turnbuckle for compensation of elevation changes
- J. Loose or broken anchors

- K. Inadequate clearances at guides
- L. Inadequate safety valve vent clearances at outlet of safety valves
- M. Any failed or deformed hanger, guide, U-bolt, anchor, snubber, or shock absorber, slide support, dampener, or supporting steel
- N. Leaks at flanges, valve bonnets and valve stems
- O. Excessively corroded valves
- P. Defective traps, separators, strainers, silencers, flexible hose, flexible fittings, and water level gage glasses
- Q. Unacceptable movements in expansion joints

The use of photographs can be an important tool in recording piping systems, hangers and supports. These can be stored with the other records and are beneficial for future reference and will establish a system history for future reference.

Each plant should maintain and file the following documentation that exists for each unit:

- A. current piping drawings
- B. construction isometrics
- C. pipeline specifications covering material, outside diameter, and wall thickness
- D. flow diagrams
- E. support drawings
- F. support setting charts
- G. records of any piping system modifications

NUCLEAR PIPE SUPPORTS

Nuclear pipe support design has evolved from a relatively simple design-by-rule approach to a complex design-byanalysis approach. Pipe support design has presented some major challenges for the nuclear power industry. The ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NF, "Component Supports", contains very detailed requirements for nuclear pipe supports. The NF Code contains requirements for material design, fabrication and installation, examination, nameplates, stamping, and reports. The principal differences between nuclear and non-nuclear pipe supports lie in the more sophisticated and demanding design, analysis, additional non-destructive examination (NDE), quality assurance, and Code inspection and stamping. However, the type of pipe supports and materials used for nuclear pipe supports are essentially the same as those used for nonnuclear.

The design of nuclear pipe supports is dependent upon a piping analysis which provides the appropriate support loading and displacements. The pipe support designer/analyst must be aware of specific assumptions that the piping analyst used in performing the piping analysis. Typical assumptions are:

- (1) no excessive support mass on pipe;
- (2) support is provided in directions shown with type support shown;
- (3) support is sufficiently rigid to permit decoupling of the analysis of the support from the pipe;
- (4) support allows for essentially unrestricted movement in the unsupported direction.

Nuclear pipe supports are designed to the same loadings that fossil power plants experience, i.e, thermal, deadweight, thermal equipment displacement loadings, and operating loadings, including turbine trip, rapid valve closure, etc. In addition to these normal loadings, nuclear power plants require detailed analysis for seismic loadings on the piping system. This detailed seismic requirement results in the significant difference between the design of nuclear pipe support versus a conventional power plant.

The seismic requirement resulted in piping systems which were considerably stiffer when compared to similar systems without seismic requirements. This was the direct result of providing additional lateral and vertical restraints to resist the seismic loadings on the piping system. The additional restraints reduced seismic stresses, but resulted in increased thermal stresses. To minimize this impact, pipe snubbers were utilized in piping systems. Snubbers are devices which are essentially only active during an earthquake or other dynamic event and offer little resistance to the slow pipe movement resulting from thermal growth. Although snubbers have seen limited use in conventional plants, their primary use was in nuclear facilities. Since the use of snubbers requires a significant amount of functional testing and inspection, their use has been considerably reduced. In addition, most nuclear plants have initiated programs to eliminate as many snubbers as possible. Although the use of snubbers should generally be avoided, they may, in certain circumstances, present the most simple and cost effective solution.

SEISMIC SUPPORTS

The following is for reference only. Refer to MSS-SP127 for detailed requirements). Seismology and its effect on building structures, components and attachments affect almost every building code and standard. Increasingly, codes and standards are requiring seismic restraints in critical areas. There are several codes and standards across the country that contain entire sections devoted to seismic restraints and bracing. Some of the more common codes are the Uniform Building Code 1991 and the 1991 California Building Standard Code (CAC Title 24, Part II.

The progressive CAC Title 24 states in Section 2330 (a):

"Every building or structure and every portion thereof, including the nonstructural components, shall be designed and constructed to resist stresses and limit deflections calculated on the basis of dynamic analysis or equivalent static lateral forces analysis ..."

It continues in Section 2336(a)

"Parts and portions of structure and their attachments, permanent nonstructural components and their attachments, and the attachments for permanent equipment supported by a structure shall be designed to resist the total design lateral seismic force, Fp, given by the following formula:

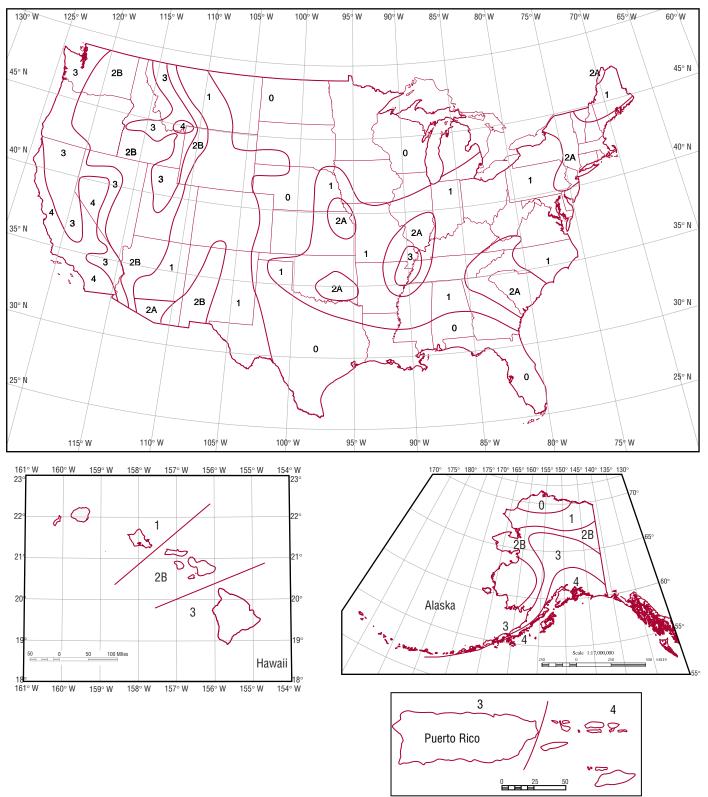
 $Fp=Z \times I \times Cp \times Wp$, Where:

- Fp = Total Design Lateral Seismic Force.
- Z = Seismic Zone Factor, Numerical Coefficient as shown in Table 23-1 and derived from Seismic Zones Map on
 Page 26.

- I = Importance Factor, as shown on Table No. 23-L and derived from Occupancy Categories shown on Table No. 23-K.
- Cp = Horizontal Force Factor ("... conduit, ductwork and piping ..." has a Cp of 0.75 per the CAC Title 24 and a Cp of 0.45 per the 1991 Uniform Building Code).
- Wp = Weight of Element or Component (Weight of pipe, ductwork and conduit)

The following conduit, ductwork and piping do NOT require bracing per CAC Title 24, Part II: Table No. 23-P, note 12.

- a. Gas piping less than 1 in. diameter.
- b. Piping in boiler and mechanical equipment rooms less than 1.25 in. inside diameter.
- c. All piping less than 2.5 in. inside diameter.
- d. All piping suspended by individual hangers 12 in. or less in length from the top of pipe to the bottom of the support for the hanger.
- e. All electrical conduit less than 2.5 in. inside diameter.
- f. All rectangular air-handling ducts less than 6 sq. ft. in cross-sectional area.
- g. All round air handling ducts less than 28 in. in diameter.
- h. All ducts suspended by hangers 12 in. or less in length from the top of the duct to the bottom of the support for the hanger.


TABLE 23-K

OCCUPANCY CATEGORIES

- (I) Essential Facilities (Essential facilities are those structures which are necessary for the emergency operations subsequent to a natural disaster.)
 - Hospitals and other medical facilities having surgery and emergency treatment areas.
 - Fire, Sheriff and Police Stations
 - Municipal, county and state government disaster operation and communication centers deemed vital in emergencies.
 - Tanks of other structures containing, housing or supporting water or other fire-suppression materials or equipment required for the
 protection of essential or hazardous facilities, or special occupancy structures.
 - · Emergency vehicle shelters and garages.
 - Standby power-generating equipment for essential facilities.
- (II) Hazardous Facilities
 - Structures housing, supporting or containing sufficient quantities of toxic or explosive substances to be dangerous to the safety of general public if released.
- (III) Special Occupancy Structure
 - Covered structures whose primary occupancy is public assembly capacity \geq 300 persons.
 - Buildings for schools through secondary or day-care centers capacity \geq 250 students.
 - Buildings for colleges or adult education schools capacity \geq 500 students
 - Medical facilities with 50 or more resident incapacitated patients, not included above.
 - · Jails and detention facilities.
 - All structures with occupancy \geq 5,000 persons.
 - Structures and equipment in power-generating stations and other public utility facilities not included above, and required for continued operation.
- (IV) Standard Occupancy Structure
 - All structures having occupancies or functions not listed above.

TABLE 23-L									
Earthquake Importance Factor (I), Based on Occupancy Category									
	1991 Uniform	CAC							
Occupancy Category	Building Code	Title 24							
I. Essential Facility	1.25	1.50							
II. Hazardous Facilities	1.25	1.50							
III. Special Occupancy Structure	s 1.00	1.15							
IV. Standard Occupancy Structur	res 1.00	1.00							

The maps shown above are for general information purposes, please visit "http://eqhazmaps.usgs.gov" for current seismic zone information.

1994 Uniform Building Code zone map. Zones are identified by the numbers from 0 to 4.

Seismic zone factors are assigned to each zone; Zone 0 = 0, Zone1 = 0.075, Zone 2A = 0.15, Zone 2B = 0.20, Zone 3 = 0.3, and Zone 4 = 0.4. Each zone also has specific structural detailing requirements.

PIPE SUPPORTS — GROOVED PIPING

When designing the hangers, supports and anchors for a grooved end pipe system, the piping designer must consider certain unique characteristics of the grooved type coupling in addition to many universal pipe hanger and support design factors. As with any pipe system, the hanger or support system must provide for

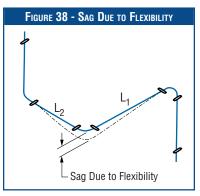
- 1) the weight of the pipe, couplings, fluid and pipe system components;
- 2) reduce stresses at pipe joints; and
- 3) permit required pipe system movement to relieve stress.

The following special factors should be considered when designing hangers and supports for a grooved end pipe system.

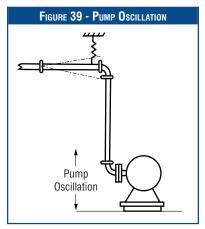
PIPE HANGER SPACING:

The following charts show the maximum span between pipe hangers for straight runs of standard weight steel pipe filled with water or other similar fluids.

Do not use these values where critical span calculations are made or where there are concentrated loads between supports.


Pipe Hanger Spacing										
For straight runs without										
CONCENTRATED LOADS AND WHERE FULL										
LINEAR MOVEMENT	IS NOT REQUIRED.									
Nominal	Max.Span									
Pipe Size	Between									
Range	Hangers									
³ ⁄4"— 1"	7'									
1¼" — 2"	10'									
21/2"—4"	12'									
5"— 8"	14'									
10"—12"	16'									
14"— 16"	18'									
18"— 24"	20'									

Pipe Hanger Spacing										
For straight runs without concentrated loads										
and where full linear movement IS required										
Nominal	Pipe Length in Feet									
Pipe Size	*Average Hangers per Pipe Length (Evenly Spaced)									
Range	7'	10'	12'	15'	20'	22'	25'	30'	35'	40'
³ ⁄4"— 1"	1	2	2	2	3	3	4	4	5	6
1¼"— 2"	1	2	2	2	3	3	4	4	5	6
2 ¹ / ₂ " - 4"	1	1	2	2	2	2	2	3	4	4
5" – 8"	1	1	1	2	2	2	2	3	3	3
10" – 12"	1	1	1	2	2	2	2	3	3	3
14" – 16"	1	1	1	2	2	2	2	3	3	3
18" – 24"	1	1	1	2	2	2	2	3	3	3
*No pipe length should be left unsupported between any two couplings.										


COUPLING FLEXIBILITY:

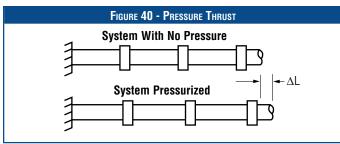
The grooved coupling's capability to allow angular and rotational movement within the coupling joint must be considered when deciding hanger and support locations. Spring hangers and supports providing for movement in more than one plane are often used to allow the pipe system to move without introducing additional stress into the pipe system.

Figure 38 demonstrates the need for each pipe length in a grooved system to be supported. The sag due to the flexibility of the Gruvlok joint could be eliminated with the proper positioning of hangers on both "L1" and "L2".

Figure 39 illustrates the effect of pump oscillation on a piping system. A spring hanger should be used to support the pipe section and also respond to the induced vibrations. The couplings in the horizontal run above the riser, should accommodate the deflection without transmitting bending stresses through the pipe system.

PRESSURE THRUSTS

Gruvlok couplings react to the application of system pressure and restrain the pipe ends from separation due to the pressure force. However, the coupling joint may not be in the selfrestraining configuration prior to the application of system pressure. The Gruvlok coupling does not restrain adjacent pipe sections from separation due to pressure forces until the coupling key sections engage the groove walls.


Random coupling joint installation will produce installed coupling conditions ranging from pipe ends fully butted to fully separated to the maximum available gap. Thus, only after system pressurization will the self-restraining function of the coupling be in effect.

The designer must account for the movement to be encountered when the system is pressurized and the joints are fully separated. Anchor and guide positions must be defined to direct the pipe joint movement such that it is not detrimental to the pipe system.

27

The effect of pressure thrust are shown in the following examples.

Figure 40 - The coupling joints have been installed butted or partially open. When pressurized the pipe ends in the coupling joints will separate to the maximum amount permitted by the coupling design.

The coupling key sections will make contact with the groove walls and restrain the pipe from further separation.

The movement at each coupling joint will add with all other joints and produce ΔL .

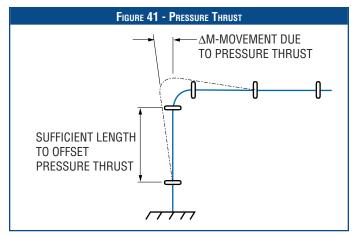
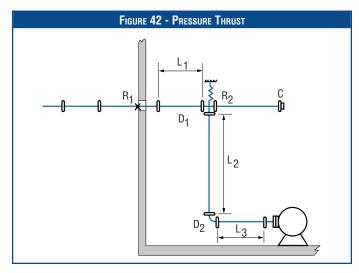



Figure 41 - In the system shown here, the pipe will move and deflect at the elbow joint due to pressure thrust.

The pipe designer must assure himself that the system has the capability of deflecting sufficiently to absorb this movement without introducing additional stresses into the pipe system.

In the deflected condition shown, temperature increases would produce further expansion of the pipe system thus increasing the deflection.

Figure 42 - To restrain this system provide a pressure thrust anchor at "R1" to resist the pressure thrust acting through the tee "D1" at the cap "C". Provide a hanger at Point "R2", or a base support at Point "D2" to support the vertical column. If the offsets L₁, L₂, and L₃ are of adequate length to handle expected pipe movements, no additional anchoring is required. Thermal movement of the pipe system should also be considered, and intermediate anchors located as required, to direct the pipe movement so as to prevent introducing bending stresses into the system.

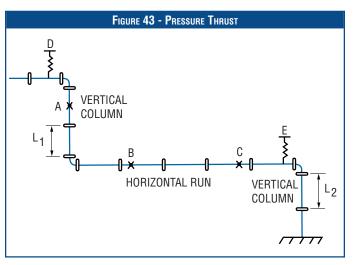
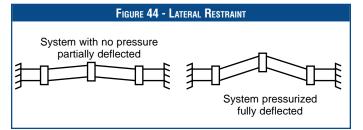



Figure 43 - Anchor at "A" to support weight of vertical water column. Use spring hanger at "D" and "E" to allow movement of vertical piping.

Anchors at "B" and "C" if offsets at L_1 and L_2 are insufficiently long to handle expected pipe movements.

Figure 44 [Lateral Restraint] - A grooved coupling joint installed in a partially deflected condition between anchor locations will deflect to its fully deflected condition when pressurized. Hangers and supports must be selected with consideration of the hanger's capability to provide lateral restraint.

Light duty hangers, while acceptable in many installations, may deflect against the application of lateral forces and result in "snaking" conditions of the pipe system.

RISER DESIGN:

Risers assembled with Gruvlok couplings are generally installed in either of two ways, In the most common method, the pipe ends are butted together within the coupling joint. Note that when installing risers, the gasket is first placed onto the lower pipe and rolled back away from the pipe end prior to positioning the upper pipe. Anchoring of the riser may be done prior to pressurization with the pipe ends butted or while pressurized, when, due to pressure thrust, the pipe ends will be fully separated.

An alternative method of riser installation is to place a metal spacer of a predetermined thickness, between the pipe ends when an additional length of pipe is added to the riser stack, The upper pipe length is anchored, the spacer removed and the coupling is then installed. This method creates a predetermined gap at each pipe joint which can be utilized in pipe systems where thermal movement is anticipated and in systems with rigid (threaded, welded, flanged) branch connections where shear forces due to pressure thrust could damage the rigid connections.

FIGURE 45

RISER WITHOUT BRANCH CONNECTIONS

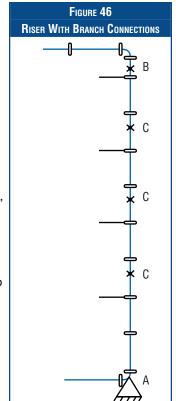
The following examples illustrate methods of installing commonly encountered riser designs.

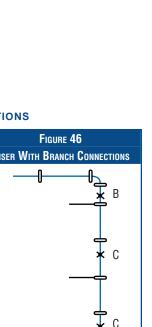
RISERS WITHOUT BRANCH CONNECTIONS

Install the riser with the pipe ends butted.

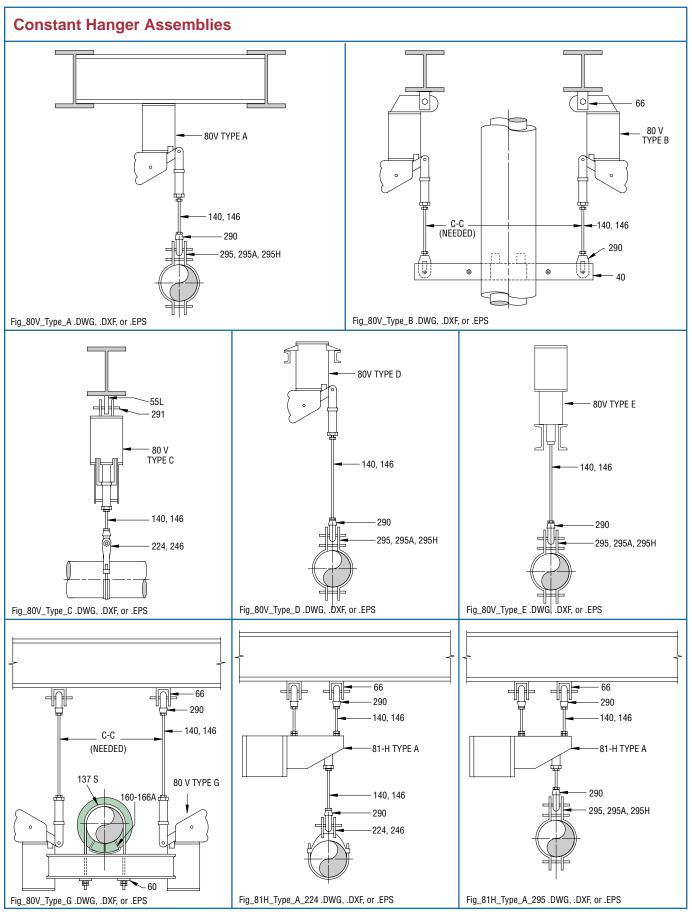
Locate an anchor at the base of the riser (A) to support the total weight of the pipe, couplings and fluid. Provide pipe guides on every other pipe length, as a minimum, to prevent possible deflection of the pipe line at the coupling joints as the riser expands due to pressure thrust or thermal growth. Note that no intermediate anchors are required.

When the system is pressurized the pipe stack will "grow" due to pressure thrust which causes maximum separation of pipe ends within the couplings. The maximum amount of stack growth can be predetermined (see Linear Movement). In this example the pipe length "L" at

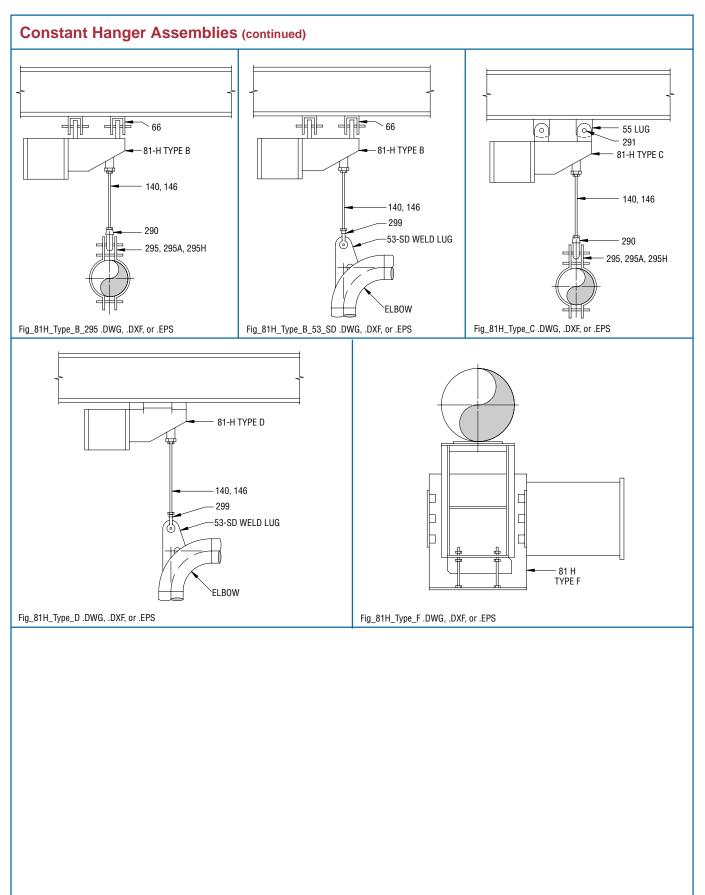

the top of the riser must be long enough to permit sufficient deflection (see Angular Movement) to accommodate the total movement "M" from both pressure thrust and thermal gradients.

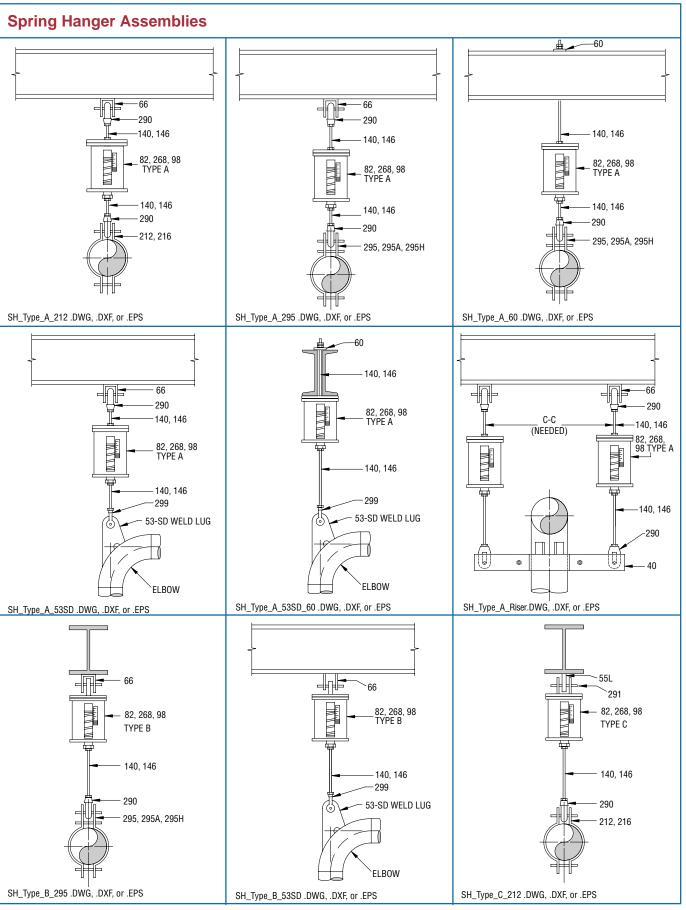

RISERS WITH BRANCH CONNECTIONS

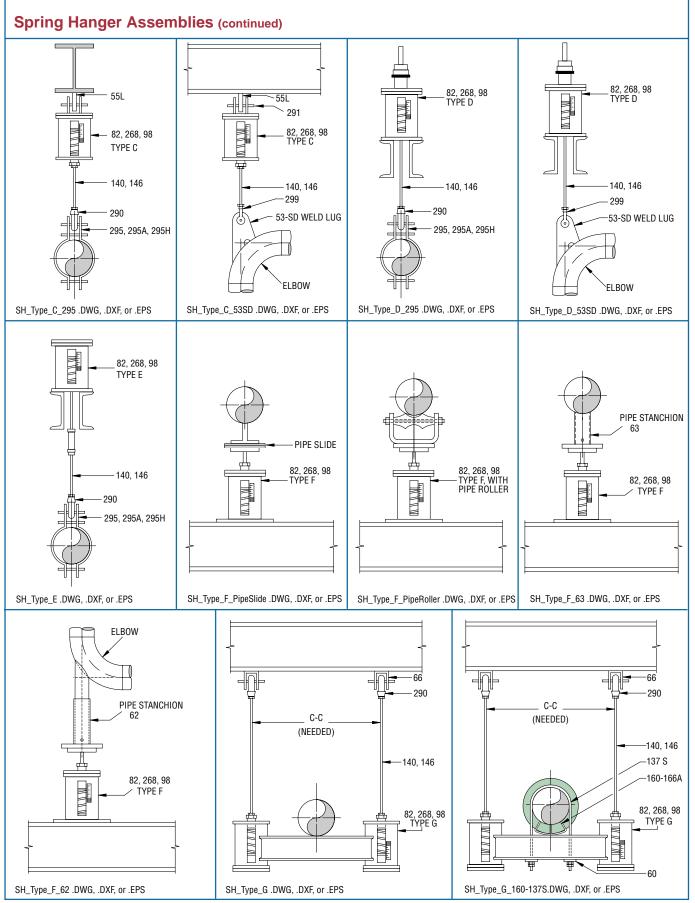
Install the riser with the predetermined gap method. Anchor the pipe at or near the base with a pressure thrust anchor "A" capable of supporting the full pressure thrust, weight of pipe and the fluid column. Anchor at "B" with an anchor capable of withstanding full pressure thrust at the top of the riser plus weight of pipe column.


Place intermediate anchors "C" as shown, between anchors "A" and "B". Also place intermediate clamps at every other pipe length as a minimum.

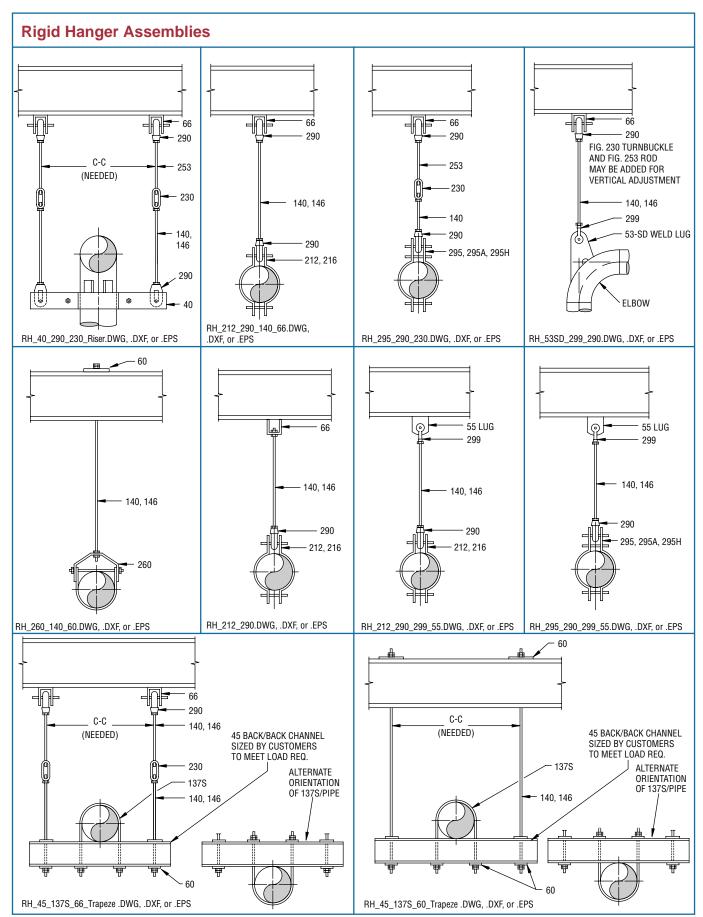
When this system is pressurized, the pipe movement due to pressure thrust will be restrained and there will be no shear forces acting at the branch connections.

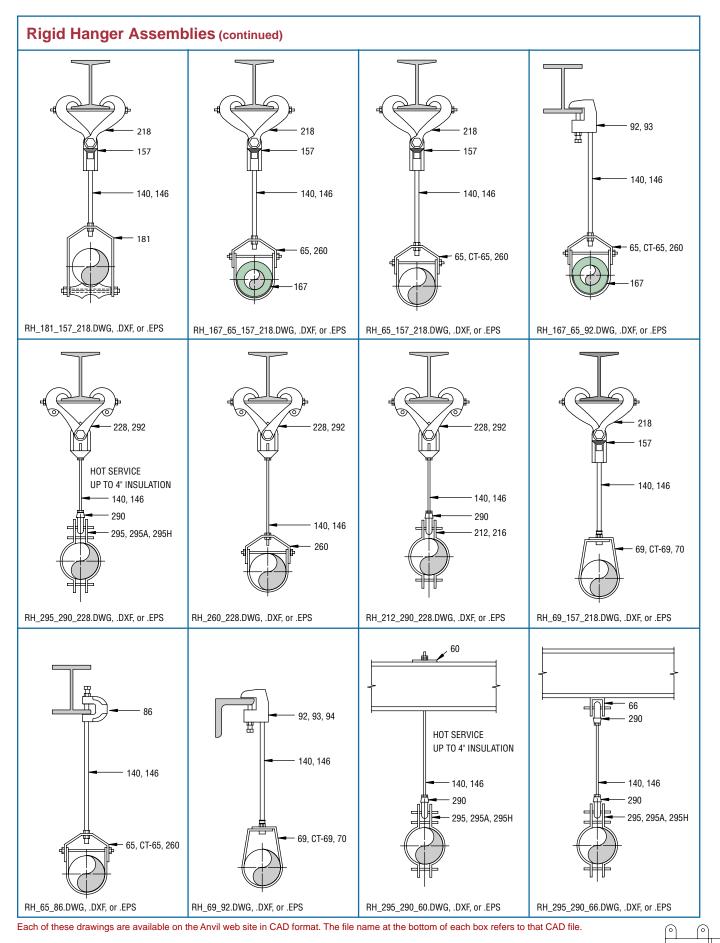


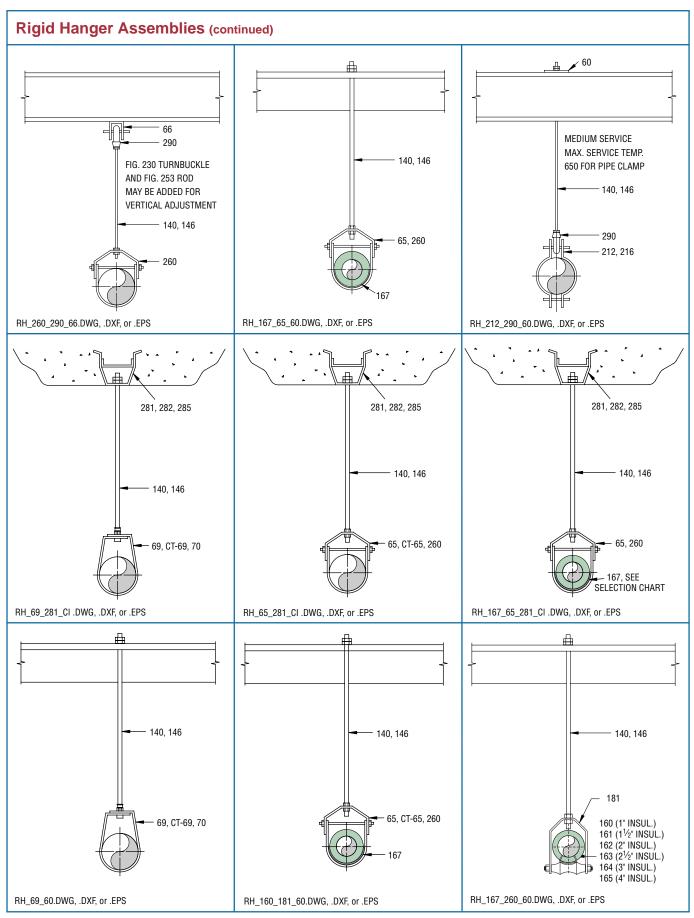




31







WEIGHTS OF PIPING MATERIALS - INTRODUCTION

The tabulation of weights of standard piping materials presented on the following pages has been arranged for convenience of selection of data that formerly consumed considerable time to develop. For special materials, the three formulae listed below for weights of tubes, weights of contents of tubes, and weights of piping insulation will be helpful.

Weight of tube = $F \times 10.68 \times T \times (D - T)$ lb/ft

T = wall thickness in inches

D = outside diameter in inches

F = relative weight factor

The weight of tube furnished in this piping data is based on low carbon steel weighing 0.2833 lb/in³.

RELATIVE WEIGHT FACTOR F

Aluminum 0.34
Brass 1.09
Cast Iron 0.92
Copper 1.14
Ferritic stainless steel 0.95
Austenitic stainless steel 1.02
Steel 1.00
Wrought iron 0.99

WEIGHT OF CONTENTS OF A TUBE

Weight of Tube Contents = $G \times .3405 \times (D - 2T)^2$ lb/ft

G = specific gravity of contents T = tube wall thickness in inches

D = tube outside diameter in inches

WEIGHT TOLERANCES

The weight per foot of steel pipe is subject to the following tolerances:

SPECIFICATION TOLERANCE

ASTM A-120 & ASTM A-53	
STD WT+5%	-5%
XS WT +5%	5%
XXS WT+10%	-10%
ASTM A-106	
SCH 10-120 +6.5%	-3.5%
SCH 140-160 +10%	-3.5%
ASTM A-335	
12" and under +6.5%	-3.5%
over I2" +10%	-5%
ASTM A-312 & ASTM A-376	
12"and under +6.5%	-3.5%
API 5L All sizes +6.5%	-3.5%

The weight of welding tees and laterals are for full size fittings. The weights of reducing fittings are approximately the same as for full size fittings.

The weights of welding reducers are for one size reduction, and are approximately correct for other reductions.

Weights of valves of the same type may vary because of individual manufacturer's designs. Listed valve weights are approximate only. Specific valve weights should be used when available.

Where specific insulation thicknesses and densities differ from those shown, refer to "Weight of Piping Insulation" formula below.

WEIGHT OF PIPING INSULATION

Pipe Insulatin Weight = $I \times .0218 \times T \times (D+T)$ lb/ft

l = insulation density in pounds per cubic foot

T = insulation thickness in inches

D = outside diameter of pipe in inches

		Threaded Hanger Rods 0 or A576 GR 1020
Nominal	Root Area	Max Recommended
Rod Diam.	of Coarse Thread	Load at Rod Temp 650°
Inch	Sq. In.	Lbs
3⁄8	0.068	730
1/2	0.126	1,350
5⁄8	0.202	2,160
3⁄4	0.302	3,230
7/8	0.419	4,480
1	0.552	5,900
11⁄4	0.889	9,500
1½	1.293	13,800
1 ³ ⁄4	1.744	18,600
2	2.292	24,600
2 ¹ /4	3.021	32,300
2 ½	3.716	39,800
2 ³ ⁄ ₄	4.619	49,400
3	5.621	60,100
3 ¹ ⁄4	6.720	71,900
3 ½	7.918	84,700
3 ³ ⁄4	9.214	98,500
4	10.608	114,000
4 ¹ ⁄4	12.100	129,000
41⁄2	13.690	146,000
4 ³ ⁄ ₄	15.379	165,000
5	17.165	184,000

		Pipe				
Sch./Wall Designation>	5S	10S	40/Std.	80/XS	160	XXS
Thickness In.	0.065	0.109	0.133	0.179	0.25	0.358
Pipe LbslFt	0.868	1.404	1.68	2.17	2.84	3.66
Water Lbs/Ft	0.478	0.409	0.37	0.31	0.23	0.12
Welded Fittings -	LINE 1: WEIG	aht in Poun	ds, Line 2:	INSULATION	Factor	
L.R. 90° Elbow	0.2 0.3	0.4 0.3	0.4 0.3	0.4 0.3	0.6 0.3	1 0.3
S.R. 90° Elbow			0.3 0.2			
L.R. 45° Elbow	0.1 0.2	0.3 0.2	0.3 0.2	0.3 0.2	0.4 0.2	0.5 0.2
Tee	0.4 0.4	0.6 0.4	0.8 0.4	0.9 0.4	1.1 0.4	1.3 0.4
Lateral	0.7 1.1	1.2 1.1	1.7 1.1	2.5 1.1		
Reducer	0.2 0.2	0.4 0.2	0.3 0.2	0.4 0.2	0.5 0.2	0.5 0.2
Cap Cap	0.1 0.3	0.1 0.3	0.3 0.3	0.3 0.3	0.4 0.3	0.5 0.3

Pipe Insulation												
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1 0.57	1 0.57	1½ 0.97	2 1.54	2 1.54						
Combination	Nom. Thick., In. Lbs/Ft						2½ 3.3	2½ 3.3	2½ 3.3	3 4.7	3 4.7	3 4.7

	Cast Iron & Steel Fitth	ngs - Lin	e 1: We	ight in F	OUNDS,	Line 2:	Insulati	on Facto	DR	
		Pr	essure	Rating	(PSI)					
		Cast	Iron				—Stee	el		
		125	250	150	300	400	600	900	1500	2500
	Screwed or	2.3	4	2.5	4	5	5	12	12	15
	Slip-On	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	Welding Neck			3 1.5	5 1.5	7 1.5	7 1.5	12 1.5	12 1.5	16 1.5
	Lap Joint			2.5 1.5	4 1.5	5 1.5	5 1.5	12 1.5	12 1.5	15 1.5
	Blind	2.5 1.5	5 1.5	2.5 1.5	5 1.5	5 1.5	5 1.5	12 1.5	12 1.5	15 1.5
	S.R. 90° Elbow						15 3.7		28 3.8	
	L.R. 90° Elbow									
\triangle	45° Elbow						14 3.4		26 3.6	
Ē	Тее						20 5.6		39 5.7	
$\vdash \downarrow \rangle$	Flanged Bonnet Gate				20 1.2		25 1.5		80 4.3	
	Flanged Bonnet – Globe or Angle								84 3.5	
	Flanged Bonnet – Check									
$\left \leftarrow \right\rangle$	Pressure Seal – Bonnet, Gate						31 1.7	31 1.7		
	Pressure Seal – Bonnet, Globe									

- Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.
- Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.
- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.
- Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

Ріре												
Sch./Wall Designation>	5S	10S	40/Std.	80/XS	160	XXS						
Thickness In.	0.065	0.109	0.14	0.191	0.25	0.382						
Pipe LbslFt	1.11	1.81	2.27	3.00	3.77	5.22						
Water Lbs/Ft	0.8	0.71	0.65	0.56	0.46	0.27						
Welded Fittings -	LINE 1: WEIG	HT IN POUN	ids, Line 2:	INSULATION	FACTOR							
L.R. 90° Elbow	0.3 0.3	0.5 0.3	0.6 0.3	0.8 0.3	1 0.3	1.3 0.3						
S.R. 90° Elbow			0.4 0.2									
L.R. 45° Elbow	0.2 0.2	0.3 0.2	0.3 0.2	0.5 0.2	0.6 0.2	0.7 0.2						
Tee	0.7 0.5	1.1 0.5	1.6 0.5	1.6 0.5	1.9 0.5	2.4 0.5						
Lateral	1.1 1.2	1.9 1.2	2.4 1.2	3.8 1.2								
Reducer	0.3 0.2	0.4 0.2	0.5 0.2	0.6 0.2	0.7 0.2	0.8 0.2						
Cap	0.1 0.3	0.1 0.3	0.4 0.3	0.4 0.3	0.6 0.3	0.6 0.3						

	Pipe Insulation											
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1 0.65	1 0.65	1½ 1.47	2 1.83	2 1.83	2½ 2.65	2½ 2.65	2½ 2.65	3 3.58	3 3.58	3 3.58
Combination	Nom. Thick., In. Lbs/Ft						2½ 3.17	2½ 3.17	2½ 3.17	3 5.76	3 5.76	3 5.76

	Cast Iron & Steel Fittings - Line 1: Weight in Pounds, Line 2: Insulation Factor												
		Pr	essure	Rating	(PSI)								
		Cast	Iron				– Ste	el					
		125	250	150	300	400	600	900	1500	2500			
	Screwed or	2.5	4.8	3.5	5	7	7	13	13	23			
	Slip-On	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5			
	Welding Neck			3	7	8	8	13	13	25			
				1.5	1.5	1.5	1.5	1.5	1.5	1.5			
o lo	Lap Joint			3.5	5	7	7	13	13	22			
				1.5	1.5	1.5	1.5	1.5	1.5	1.5			
	Blind	2.8	5.5	3.5	4	7	7	13	13	23			
		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5			
	S.R. 90° Elbow				17		18		33				
					3.7		3.8		3.9				
1	L.R. 90° Elbow				18								
					3.9								
\wedge	45° Elbow				15		16		31				
<u> </u>					3.4		3.5		3.7				
l L L	Тее				23		28		49				
					5.6		5.6		5.9				
	Flanged Bonnet				40		60		97				
	Gate				4		4.2		4.6				
	Flanged Bonnet												
	 Globe or Angle 												
	Flanged Bonnet				21								
	– Check				4								
	Pressure Seal							38	38				
	– Bonnet, Gate							1.1	1.1				
	Pressure Seal												
	– Bonnet, Globe												
							1	1	1				

 Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.

- Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.
- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.
- Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

			Pipe					
Sch./Wall Designation>	5S	10S	40/Std.	80/XS	160	XXS		
Thickness In.	0.065	0.109	0.145	0.2	0.281	0.4	0.525	0.65
Pipe LbslFt	1.27	2.09	2.72	3.63	4.86	6.41	7.71	8.68
Water Lbs/Ft	1.07	0.96	0.88	0.77	0.61	0.41	0.25	0.12
Welded Fittings -	LINE 1: WEIG	HT IN POUN	ds, Line 2:	INSULATION	Factor			
L.R. 90° Elbow	0.4 0.4	0.8 0.4	0.9 0.4	1.2 0.4	1.5 0.4	2 0.4		
S.R. 90° Elbow			0.6 0.3	0.8 0.3				
L.R. 45° Elbow	0.3 0.2	0.5 0.2	0.5 0.2	0.7 0.2	0.8 0.2	0.1 0.2		
Tee	0.9 0.6	1.5 0.6	2 0.6	2.4 0.6	3 0.6	3.7 0.6		
Lateral	1.3 1.3	2.1 1.3	3.3 1.3	5.5 1.3				
Reducer	0.3 0.2	0.6 0.2	0.6 0.2	0.8 0.2	1 0.2	1.2 0.2		
Cap Cap	0.1 0.3	0.2 0.3	0.4 0.3	0.5 0.3	0.7 0.3	0.8 0.3		

	Pipe Insulation											
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1 0.84	1 0.84	1½ 1.35	2 2.52	2 2.52	2½ 3.47	2½ 3.47	2½ 3.47	3 4.52	3 4.52	3 4.52
Combination	Nom. Thick., In. Lbs/Ft						2½ 4.2	2½ 4.2	2½ 4.2	3 5.62	3 5.62	3 5.62

	CAST IRON & STEEL FITTH	ngs - Lin	ie 1: We	ight in F	OUNDS,	LINE 2:	INSULATI	on Fact	OR	
		Pr	essure	Rating	(PSI)					
		Cast	Iron				-Ste	el		
		125	250	150	300	400	600	900	1500	2500
	Screwed or	3	6	3.5	6	9	9	19	19	30
	Slip-On	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	Welding Neck			4.5	8	12	12	19	19	34
				1.5	1.5	1.5	1.5	1.5	1.5	1.5
	Lap Joint			3.5	6	9	9	19	19	30
				1.5	1.5	1.5	1.5	1.5	1.5	1.5
	Blind	4	6	3.5	8	10	10	19	19	31
		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	S.R. 90° Elbow	9		12	23		26		46	
		3.7		3.7	3.8		3.9		4	
1	L.R. 90° Elbow	12		13	24					
		4		4	4					
\wedge	45° Elbow	8		11	21		23		39	
44		3.4		3.4	3.5		3.5		3.7	
کسر ا	Tee	15		20	30		37		70	
		5.6		5.6	5.7		5.8		6	
	Flanged Bonnet	27			55		70		125	
	Gate	6.8			4.2		4.5		5	
	Flanged Bonnet				40		45		170	
	 Globe or Angle 				4.2		4.2		5	
	Flanged Bonnet			30	35		40		110	
V	– Check			4.1	4.1		4.2		4.5	
	Pressure Seal							42	42	
	– Bonnet, Gate							1.9	1.2	
	Pressure Seal									
	– Bonnet, Globe									
L										

- Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.
- Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.
- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.
- Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

WEIGHT OF PIPING MATERIALS - 2" PIPE (2.375" O.D.)

			Pipe					
Sch./Wall Designation>	5S	10S	40/Std.	80/XS	160	XXS		
Thickness In.	0.065	0.109	0.154	0.218	0.343	0.436	0.562	0.687
Pipe LbslFt	1.60	2.64	3.65	5.02	7.44	9.03	10.88	12.39
Water Lbs/Ft	1.72	1.58	1.46	1.28	0.97	0.77	0.53	0.34
Welded Fittings -	LINE 1: WEI	GHT IN POUM	ids, Line 2	INSULATION	Factor			
L.R. 90° Elbow	0.6 0.5	1.1 0.5	1.5 0.5	2.1 0.5	3 0.5	4 0.5		
S.R. 90° Elbow			1 0.3	1.4 0.3				
L.R. 45° Elbow	0.4 0.2	0.6 0.2	0.9 0.2	1.1 0.2	1.6 0.2	2 0.2		
Tee	1.1 0.6	1.8 0.6	2.9 0.6	3.7 0.6	4.9 0.6	5.7 0.6		
Lateral	1.9 1.4	3.2 1.4	5 1.4	7.7 1.4				
Reducer	0.4 0.3	0.9 0.3	0.9 0.3	1.2 0.3	1.6 0.3	1.9 0.3		
Cap	0.2 0.4	0.3 0.4	0.6 0.4	0.7 0.4	1.1 0.4	1.2 0.4		

					Pipe Ins	ULATION						
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1 1.01	1 1.01	1½ 1.71	2 2.53	2 2.53	2½ 3.48	2½ 3.48	2½ 4.42	3 4.42	3 4.42	3 5.59
Combination	Nom. Thick., In. Lbs/Ft						2½ 4.28	2½ 4.28	2½ 5.93	3 5.93	3 5.93	3 7.8

	CAST IRON & STEEL FITTI	ngs - Lin	1: WE	ight in I	Pounds,	LINE 2:	Insulati	on F act	OR		
		Pr	ressure	Rating	(PSI)						1
		Cast	Iron				Ste	el ——			
		125	250	150	300	400	600	900	1500	2500	1
	Screwed or	5	7	6	9	11	11	32	32	49	1
	Slip-On	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
	Welding Neck			7	11	14	14	32	32	53	1
				1.5	1.5	1.5	1.5	1.5	1.5	1.5	
	Lap Joint			6	9	11	11	32	32	48	1
				1.5	1.5	1.5	1.5	1.5	1.5	1.5	
	Blind	5	8	5	10	12	12	32	32	50	
		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	l
	S.R. 90° Elbow	14	20	19	29		35		83		
<u>44</u> -		3.8	3.8	3.8	3.8		4		4.2		l
A	L.R. 90° Elbow	16	27	22	31						1
		4.1	4.1	4.1	4.1						l
\land	45° Elbow	12	18	16	24		33		73		1
للمعمل		3.4	3.5	3.4	3.5		3.7		3.9		l
المحط	Tee	21	32	27	41		52		129		
l i i i i		5.7	5.7	5.7	5.7		6		6.3		l
	Flanged Bonnet	37	52	40	65		80		190		1
I - IL	Gate	6.9	7.1	4	4.2		4.5		5		l
	Flanged Bonnet	30	64	30	45		85		235		1
	– Globe or Angle	7	7.3	3.8	4		4.5		5.5		l
	Flanged Bonnet	26	51	35	40		60		300		1
₩./	– Check	7	7.3	3.8	4		4.2		5.8		
	Pressure Seal								150		1
	– Bonnet, Gate								2.5		
	Pressure Seal								165		1
	– Bonnet, Globe								3		l
											I.

 Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.

 Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.

- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.

Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

			PIPE					
Sch./Wall Designation>	58	10S	40/Std.	80/XS	160	XXS		
Thickness In.	0.083	0.12	0.203	0.276	0.375	0.553	0.675	0.8
Pipe LbslFt	2.48	3.53	5.79	7.66	10.01	13.70	15.86	17.73
Water Lbs/Ft	2.5	2.36	2.08	1.84	1.54	1.07	0.79	0.55
Welded Fittings -	LINE 1: WEIG	HT IN POUN	ds, Line 2:	INSULATION	Factor			
L.R. 90° Elbow	1.2 0.6	1.8 0.6	3 0.6	3.8 0.6	5 0.6	7 0.6		
S.R. 90° Elbow			2.2 0.4	2.5 0.4				
L.R. 45° Elbow	0.7 0.3	1 0.3	1.6 0.3	2.1 0.3	3 0.3	3.5 0.3		
Tee	2.1 0.8	3 0.8	5.2 0.8	6.4 0.8	7.8 0.8	9.8 8		
Lateral	3.5 1.5	4.9 1.5	9 1.5	13 1.5				
Reducer	0.6 0.3	1.2 0.3	1.6 0.3	2 0.3	2.7 0.3	3.3 0.3		
Cap	0.3 0.4	0.4 0.4	0.9 4	0.1 0.4	1.9 0.4	2.0 0.4		

	Pipe Insulation											
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1 1.14	1 1.14	1½ 2.29	2 3.23	2 3.23	2½ 4.28	2½ 4.28	3 5.46	3 5.46	3½ 6.86	3½ 6.86
Combination	Nom. Thick., In. Lbs/Ft						2½ 5.2	2½ 5.2	3 7.36	3 7.36	3½ 9.58	3½ 9.58

	CAST IRON & STEEL FITTH	vgs - Lii	ie 1: We	ight in F	OUNDS,	LINE 2:	Insulati	on Fact	OR	
		Pi	essure	Rating	(PSI)					
		Cast	Iron				- Ste	el		
		125	250	150	300	400	600	900	1500	2500
	Screwed or	7	12.5	8	14	17	17	46	46	69
	Slip-On	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	Welding Neck			11 1.5	16 1.5	22 1.5	22 1.5	46 1.5	46 1.5	66 1.5
	Lap Joint			8 1.5	14 1.5	16 1.5	16 1.5	45 1.5	45 1.5	67 1.5
	Blind	7.8	10	8	16	19	19	45	45	70
		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	S.R. 90° Elbow	20	33	27	42		50		114	
deed "		3.8	3.9	3.8	3.9		4.1		4.4	
1	L.R. 90° Elbow	24		30	47					
		4.2		4.2	4.2					
\wedge	45° Elbow	18	31	22	35		46		99	
لمعط		3.5	3.6	3.5	3.6		3.8		3.9	
المسط	Tee	31	49	42	61		77		169	
		5.7	5.8	5.7	5.9		6.2		6.6	
	Flanged Bonnet	50	82	60	100		105		275	
	Gate	7	7.1	4	4.2		4.6		5.2	
	Flanged Bonnet	43	87	50	70		120		325	
· ····	– Globe or Angle	7.1	7.4	4	4.1		4.6		5.5	
	Flanged Bonnet – Check	36 7.1	71 7.4	40 4	50 4		105 4.6		320 5.5	
	Pressure Seal			•					215	
$ \land \downarrow \rangle$	– Bonnet, Gate								215	
	Pressure Seal								230	
	– Bonnet, Globe								2.8	

- Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.
- Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.
- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.
- Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

WEIGHT OF PIPING MATERIALS - 3" PIPE (3.500" O.D.)

			Pipe					
Sch./Wall Designation>	5S	10S	40/Std.	80/XS	160	XXS		
Thickness In.	0.083	0.12	0.216	0.3	0.438	0.6	725	0.85
Pipe LbslFt	3.03	4.33	7.58	10.25	14.32	18.58	21.49	24.06
Water Lbs/Ft	3.78	3.61	3.2	2.86	2.35	1.8	1.43	1.1
Welded Fittings -	LINE 1: WEI	GHT IN P OUI	nds, Line 2	INSULATION	Factor			
L.R. 90° Elbow	1.7 0.8	2.5 0.8	4.7 0.8	6 0.8	8.5 0.8	11 0.8		
S.R. 90° Elbow			3.3 0.5	4.1 0.5				
L.R. 45° Elbow	0.9 0.3	1.3 0.3	2.5 0.3	3.3 0.3	4.5 0.3	5.5 0.3		
Tee	2.7 0.8	3.9 0.8	7 0.8	10 0.8	12.2 0.8	14.8 0.8		
Lateral	4.5 1.8	6.4 1.8	12.5 1.8	18 1.8				
Reducer	0.8 0.3	1.5 0.3	2.1 0.3	2.8 0.3	3.7 0.3	4.6 0.3		
Cap	0.5 0.5	0.7 0.5	1.4 0.5	1.8 0.5	3.5 0.5	3.6 0.5		

					Pipe Ins	ULATION						
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1 1.25	1 1.25	1½ 2.08	2 3.01	2 3.01	2½ 4.07	3 5.24	3 5.24	3 5.24	3½ 6.65	3½ 6.65
Combination	Nom. Thick., In. Lbs/Ft						2½ 5.07	3 6.94	3 6.94	3 6.94	3½ 9.17	3½ 9.17

	CAST IRON & STEEL FITTI	ngs - Lii	ve 1: We	ight in	Pounds,	LINE 2:	Insulati	on Fact	OR		
		Pi	ressure	Rating	(PSI)						1
		Cas	t Iron				– Ste	el			1
		125	250	150	300	400	600	900	1500	2500	
	Screwed or	8.6	15.8	9	17	20	20	37	61	102	
	Slip-On	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
	Welding Neck			12 1.5	19 1.5	27 1.5	27 1.5	38 1.5	61 1.5	113 1.5	
a/ta	Lap Joint			9 1.5	17 1.5	19 1.5	19 1.5	36 1.5	60 1.5	99 1.5	
	Blind	9	17.5	10	20	24	24	38	61	105	
	0.0.00	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
المحيك	S.R. 90° Elbow	25 3.9	44 4	32 3.9	53 4		67 4.1	98 4.3	150 4.6		
	L.R. 90° Elbow	29 4.3		40 4.3	63 4.3						
\triangle	45° Elbow	21 3.5	39 3.6	28 3.5	46 3.6		60 3.8	93 3.9	135 4		
Ē	Тее	38 5.9	62 6	52 5.9	81 6		102 6.2	151 6.5	238 6.9		
$\vdash \downarrow \rangle$	Flanged Bonnet Gate	66 7	112 7.4	70 4	125 4.4		155 4.8	260 5	410 5.5		
$\vdash $	Flanged Bonnet – Globe or Angle	56 7.2	87 7.6	60 4.3	95 4.5		155 4.8	225 5	495 5.5		
	Flanged Bonnet – Check	46 7.2	100 7.6	60 4.3	70 4.4		120 4.8	150 4.9	440 5.8		
$\vdash \downarrow \rangle$	Pressure Seal – Bonnet, Gate							208 3	235 3.2		
$\vdash \downarrow)$	Pressure Seal – Bonnet, Globe							135 2.5	180 3		

 Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.

 Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.

 Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.

- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.

Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

		Pipe				
Sch./Wa	all Designation>	5S	10S	40/Std.	80/XS	160
Thickne	ss In.	0.083	0.12	0.226	0.318	0.636
Pipe L	_bslFt	3.47	4.97	9.11	12.51	22.85
Water	Lbs/Ft	5.01	4.81	4.28	3.85	2.53
V	Velded Fittings - Line 1:	WEIGHT IN F	Pounds, Li	NE 2: INSUL	ATION FACTO	R
(it	L.R. 90° Elbow	2.4 0.9	3.4 0.9	6.7 0.9	8.7 0.9	15.0 0.9
(i	S.R. 90° Elbow			4.2 0.6	5.75 0.6	
	L.R. 45° Elbow	1.2 4	1.7 0.4	3.3 0.4	4.4 0.4	8.0 0.4
	Tee	3.4 0.9	4.9	10.3 0.9	13.8 0.9	20.2 0.9
	Lateral	6.2 1.8	8.9 1.8	17.2 1.8	25 1.8	
	Reducer	1.2 0.3	2.1 0.3	3.0 0.3	4.0 0.3	6.8 0.3
Ð	Сар	0.6 0.6	0.8 0.6	2.1 0.6	2.8 0.6	5.5 0.6

	Pipe Insulation											
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1 1.83	1 1.83	1½ 2.77	2 3.71	2½ 4.88	2½ 4.88	3 6.39	3 6.39	3½ 7.8	3½ 7.8	3½ 7.8
Combination	Nom. Thick., In. Lbs/Ft						2½ 6.49	3 8.71	3 8.71	3½ 10.8	3½ 10.8	3½ 10.8

	CAST IRON & STEEL FITTI	ngs - Lii	ve 1: We	ight in F	Pounds,	LINE 2:	INSULATI	on Fact	OR	
		Pi	ressure	Rating	(PSI)					
		Cast	t Iron				– Ste	el ——		
		125	250	150	300	400	600	900	1500	2500
n la	Screwed or Slip-On	11 1.5	20 1.5	13 1.5	21 1.5	27 1.5	27 1.5			
	Welding Neck			14 1.5	22 1.5	32 1.5	32 1.5			
	Lap Joint			13 1.5	21 1.5	26 1.5	26 1.5			
	Blind	13 1.5	23 1.5	15 1.5	25 1.5	35 1.5	35 1.5			
	S.R. 90° Elbow	33 4		49 4			82 4.3			
	L.R. 90° Elbow			54 4.4						
\triangle	45° Elbow	29 3.6		39 3.6			75 3.6			
Г	Тее	51 6	103 6.2	70 6			133 6.4			
$\vdash \downarrow \rangle$	Flanged Bonnet Gate	82 7.1	143 7.5	155 4.5			180 4.8	360 5	510 5.5	
$\vdash \!$	Flanged Bonnet – Globe or Angle	74 7.3	137 7.7				160 4.7			
	Flanged Bonnet – Check	71 7.3	125 7.7				125 4.7			
$\vdash \downarrow \rangle$	Pressure Seal – Bonnet, Gate						140 2.5	295 2.8	380 3	
	Pressure Seal – Bonnet, Globe									

- Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.
- Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.
- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.
- Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

WEIGHT OF PIPING MATERIALS - 4" PIPE (4.500" O.D.)

				Рірі	E						
Sch./Wall Designation>	5S	10S	10		40/Std.	80/XS	120		160	XXS	
Thickness In.	0.083	0.12	0.188	0.237	0.337	0.438	0.5	0.531	0.674	0.8	0.925
Pipe LbslFt	3.92	5.61	8.56	10.79	14.98	18.96	21.36	22.51	27.54	31.61	35.32
Water Lbs/Ft	6.4	6.17	5.8	5.51	4.98	4.48	4.16	4.02	3.38	2.86	2.39
N N	ELDED FITTING	gs - Line 1	: Weight in	POUNDS, L	INE 2: I NSUL	ation Facto	R				
L.R. 90° Elbow	3 1	4.3 1		8.7 1	12 1			18 1	20.5 1		
S.R. 90° Elbow				6.7 0.7	8.3 0.7						
L.R. 45° Elbow	1.5 0.4	2.2 0.4		4.3 0.4	5.9 0.4			8.5 0.4	10 4		
Tee	3.9 1	5.7 1		13.5 1	16.4 1			22.8 1	26.6 1		
Lateral	6.6 2.1	10 2.1		20.5 2.1	32 2.1						
Reducer	1.2 0.3	2.4 0.3		3.6 0.3	4.8 0.3			6.6 0.3	8.2 0.3		
Cap	0.8 0.3	1.2 0.3		2.5 0.5	3.4 0.5			6.5 6.5	6.6 6.6]	
	0.0	0.0		0.0	0.5			0.5	0.0		

					Pipe Ins	ULATION						
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1 1.62	1 1.62	1½ 2.55	2 3.61	2½ 4.66	2½ 4.66	3 6.07	3 6.07	3½ 7.48	3½ 7.48	4 9.1
Combination	Nom. Thick., In. Lbs/Ft						2½ 6.07	3 8.3	3 8.3	3½ 10.6	3½ 10.6	3½ 10.6

	CAST IRON & STEEL FITTI	ngs - Lii	1: WE	ight in I	Pounds,	LINE 2:	Insulati	on F act	OR	
		Pi	ressure	Rating	(PSI)					
		Cast	Iron				Ste	el ——		
		125	250	150	300	400	600	900	1500	2500
	Screwed or	14	24	15	26	32	43	66	90	158
	Slip-On	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	Welding Neck			17	29	41	48	648	90	177
				1.5	1.5	1.5	1.5	1.5	1.5	1.5
ar In	Lap Joint			15	26	31	42	64	92	153
				1.5	1.5	1.5	1.5	1.5	1.5	1.5
	Blind	16	27	19	31	39	47	67	90	164
		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	S.R. 90° Elbow	43	69	59	85	99	128	185	254	
		4.1	4.2	4.1	4.2	4.3	4.4	4.5	4.8	
Λ	L.R. 90° Elbow	50		72	98					
		4.5		4.5	4.5					
\wedge	45° Elbow	38	62	51	78	82	119	170	214	
<u>daad</u>		3.7	3.8	3.7	3.8	3.9	4	4.1	4.2	
المحط	Tee	66	103	86	121	153	187	262	386	
		6.1	6.3	6.1	6.3	6.4	6.6	6.8	7.2	
	Flanged Bonnet	109	188	100	175	195	255	455	735	
	Gate	7.2	7.5	4.2	4.5	5	5.1	5.4	6	
	Flanged Bonnet	97	177	95	145	215	230	415	800	
	 Globe or Angle 	7.4	7.8	4.3	4.8	5	5.1	5.5	6	
	Flanged Bonnet	80	146	80	105	160	195	320	780	
U	– Check	7.4	7.8	4.3	4.5	4.8	5	5.6	6	
	Pressure Seal						215	380	520	
	– Bonnet, Gate						2.8	3	4	
	Pressure Seal							240	290	
	– Bonnet, Globe							2.7	3	
						L	I	1	1	

 Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.

 Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.

- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.

Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

			Pi	PE					
Sch./Wall Designation>	58	10S	40/Std	80/XS	120	160	XXS		
Thickness In.	0.109	0.134	0.258	0.375	0.5	0.625	0.75	0.875	1
Pipe LbslFt	6.35	7.77	14.62	20.78	27.04	32.96	38.55	43.81	47.73
Water Lbs/Ft	9.73	9.53	8.66	7.89	7.09	6.33	5.62	4.95	4.23
Welded Fit	rings - Line 1:	WEIGHT IN	Pounds, L	ne 2: I nsul	ATION FACTO	DR			
L.R. 90° Elbow	6 1.3	7.4 1.3	16 1.3	21.4 1.3		33 1.3	34 1.3		
S.R. 90° Elbow	4.2 0.8	5.2 0.8	10.4 0.8	14.5 0.8					
L.R. 45° Elbow	3.1 0.5	3.8 0.5	8.3 0.5	10.5 0.5		14 0.5	18 0.5		
Tee	9.8 1.2	12 1.2	19.8 1.2	26.9 1.2		38.5 1.2	43.4 1.2		
Lateral	15.3 2.5	18.4 2.5	31 2.5	49 2.5					
Reducer	2.5 0.4	4.3 0.4	5.9 0.4	8.3 0.4		12.4 0.4	14.2 0.4		
Сар	1.3 0.7	1.6 0.7	4.2 0.7	5.7 0.7		11 0.7	11 0.7		

	Pipe Insulation												
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200	
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1 1.86	1½ 2.92	1½ 2.92	4.08	2½ 5.38	2½ 5.38	3 6.9	3½ 8.41	3½ 8.41	4 10.4	4 10.4	
Combination	Nom. Thick., In. Lbs/Ft						2½ 7.01	3 9.3	3½ 11.8	3½ 11.8	4 14.9	4 14.9	

Cast Iron & Steel Fittings - Line 1: Weight in Pounds, Line 2: Insulation Factor Pressure Rating (PSI)													
		Pr	ressure	Rating	(PSI)								
		Cast	Iron				– Ste	el ——-					
		125	250	150	300	400	600	900	1500	2500			
	Screwed or	17	28	18	32	37	73	100	162	259			
	Slip-On	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5			
	Welding Neck			22 1.5	36 1.5	49 1.5	78 1.5	103 1.5	162 1.5	293 1.5			
	Lap Joint			18 1.5	32 1.5	35 1.5	71 1.5	98 1.5	179 1.5	253 1.5			
	Blind	21	35	23	39	50	78	104	172	272			
		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5			
	S.R. 90° Elbow	55	91	80	113	123	205	268	435				
<u><u><u></u></u></u>		4.3	4.3	4.3	4.3	4.5	4.7	4.8	5.2				
	L.R. 90° Elbow	65 4.7		91 4.7	128 4.7								
	45° Elbow	48	80	66	98	123	180	239	350				
<u>//</u> °		3.8	3.8	3.8	3.8	4	4.2	4.3	4.5				
Г	Тее	84 6.4	139 6.5	119 6.4	172 6.4	179 6.8	304 7	415 7.2	665 7.8				
$\vdash \downarrow \rangle$	Flanged Bonnet Gate	138 7.3	264 7.9	150 4.3	265 4.9	310 5.3	455 5.5	615 6	1340 7				
$\vdash $	Flanged Bonnet – Globe or Angle	138 7.6	247 8	155 4.3	215 5	355 5.2	515 5.8	555 5.8	950 6				
	Flanged Bonnet – Check	118 7.6	210 8	110 4.3	165 5	185 5	350 5.8	570 6	1150 7				
$\vdash \downarrow \rangle$	Pressure Seal – Bonnet, Gate						350 3.1	520 3.8	865 4.5				
	Pressure Seal – Bonnet, Globe							280 4	450 4.5				

- Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.
- Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.
- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.
- Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

WEIGHT OF PIPING MATERIALS - 6" PIPE (6.625" O.D.)

				PIPE						
Sch./Wall Designation>	5S	10	40/Std.	80/XS	120	160	XXS			
Thickness In.	0.109	0.134	0.219	0.28	0.432	0.562	0.718	0.864	1	1.125
Pipe LbslFt	5.37	9.29	15.02	18.97	28.57	36.39	45.30	53.20	60.01	66.08
Water Lbs/Ft	13.98	13.74	13.1	12.51	11.29	10.3	9.2	8.2	7.28	6.52
Welded	FITTINGS - L	.ine 1: Wei	GHT IN POUM	ids, Line 2:	INSULATION	Factor	·	·		
L.R. 90° Elbow	8.9 1.5	11 1.5		22.8 1.5	32.2 1.5	43 1.5	55 1.6	62 1.5		
S.R. 90° Elbow	6.1 1	7.5 1		16.6 1	22.9 1	30 1				
L.R. 45° Elbow	4.5 0.6	5.5 0.6		11.3 0.6	16.4 0.6	21 0.6	26 0.6	30 0.6		
Tee	13.8 1.4	17 1.4		31.3 1.4	39.5 1.4		59 1.4	68 1.4		
Lateral	16.7 2.9	20.5 2.9		42 2.9	78 2.9					
Reducer	3.3 0.5	5.8 0.5		8.6 0.6	12.6 0.5		18.8 0.5	21.4 0.5		
Cap	1.6 0.9	1.9 0.9		6.4 0.9	9.2 0.9	13.3 0.9	17.5 0.9	17.5 0.9		

					Pipe Ins	ULATION						
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1 2.11	1½ 3.28	2 4.57	2 4.57	2½ 6.09	3 7.6	3 7.6	3½ 9.82	3½ 9.82	4 11.5	4 11.4
Combination	Nom. Thick., In. Lbs/Ft						3 10.3	3 10.3	3½ 13.4	3½ 13.4	4 16.6	4 16.6

	CAST IRON & STEEL FITTI	ngs - Lii	1: WE	ight in I	Pounds,	LINE 2:	Insulati	on F act	OR		
		Pi	ressure	Rating	(PSI)						
		Cast	Iron				– Ste	el ——			
		125	250	150	300	400	600	900	1500	2500	
	Screwed or	20	38	22	45	54	95	128	202	396	1
	Slip-On	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
	Welding Neck			27	48	67	96	130	202	451	L
				1.5	1.5	1.5	1.5	1.5	1.5	1.5	
of to	Lap Joint			22	45	52	93	125	208	387	L
				1.5	1.5	1.5	1.5	1.5	1.5	1.5	
	Blind	26	48	29	56	71	101	133	197	418	ŀ
		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
	S.R. 90° Elbow	71	121	90	147	184	275	375	566		L
		4.3	4.4	4.3	4.4	4.6	4.8	5	5.3		1
A	L.R. 90° Elbow	88		126	182						L
		4.9		4.9	4.9						
\wedge	45° Elbow	63	111	82	132	149	240	320	487		ŀ
		3.8	3.9	3.8	3.9	4.1	4.3	4.3	4.6		
	Tee	108	186	149	218	280	400	565	839		ŀ
		6.5	6.6	6.5	6.6	6.9	7.2	7.5	8		
	Flanged Bonnet	172	359	190	360	435	620	835	1595		•
· ••	Gate	7.3	8	4.3	5	5.5	5.8	6	7		
	Flanged Bonnet	184	345	185	275	415	645	765	1800		L
· •·	– Globe or Angle	7.8	8.2	4.4	5	5.3	5.8	6	7		
I ¶)	Flanged Bonnet	154	286	150	200	360	445	800	1730		L
	– Check	7.8	8.2	4.8	5	5.4	6	6.4	7		
	Pressure Seal						580	750	1215		
	– Bonnet, Gate						3.5	4	5		-
	Pressure Seal							730	780		
	– Bonnet, Globe							4	5		

 Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.

 Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.

 Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.

• To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.

- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.

Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

					Pipe							
Sch./Wall Designation>	5 S	10S		20	30	40/STD	60	80/XS	100	120	140	160
Thickness In.	0.109	0.148	0.219	0.25	0.277	0.322	0.406	0.5	0.593	0.718	0.812	0.906
Pipe LbslFt	9.91	13.40	19.64	22.36	24.70	28.55	35.64	43.4	50.9	60.6	67.8	74.7
Water Lbs/Ft	24.07	23.59	22.9	22.48	22.18	21.69	20.79	19.8	18.8	17.6	16.7	15.8
		WELDED	Fittings - L	INE 1: W EIG	HT IN POUN	ds, Line 2:	NSULATION	Factor				
L.R. 90° Elbow	15.4 2	21 2				44.9 2		70.3 2				120 2
S.R. 90° Elbow	6.6 1.3	14.3 1.3				34.5 1.3		50.2 1.3				
L.R. 45° Elbow	8.1 0.8	11 0.8				22.8 0.8		32.8 0.8				56 0.8
Tee	18.4 1.8	25 1.8				60.2 1.8		78 1.8				120 1.8
Lateral	25.3 3.8	41.1 3.8				76 3.8		140 3.8				
Reducer	4.5 0.5	7.8 0.5				13.9 0.5		20.4 0.5				32.1 0.5
Cap	2.1 1	2.8 1				11.3 1		16.3 1				32 1

	Pipe Insulation												
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200	
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1½ 4.13	1½ 4.13	2 5.64	2 5.64	2½ 7.85	3 9.48	3½ 11.5	3½ 11.5	4 13.8	4 13.8	4½ 16	
Combination	Nom. Thick., In. Lbs/Ft						3 12.9	3½ 16.2	3½ 16.2	4 20.4	4 20.4	4½ 23.8	

Cast Iron & Steel Fittings - Line 1: Weight in Pounds, Line 2: Insulation Factor Pressure Rating (PSI)													
		Pi	essure	Rating	(PSI)								
		Cast	Iron				– Ste	el ——					
		125	250	150	300	400	600	900	1500	2500			
of To	Screwed or Slip-On	29 1.5	60 1.5	33 1.5	67 1.5	82 1.5	135 1.5	207 1.5	319 1.5	601 1.5			
	Welding Neck	1.5	1.5	42	76	104	137	222	334	692			
				1.5	1.5	1.5	1.5	1.5	1.5	1.5			
	Lap Joint			33 1.5	77 1.5	79 1.5	132 1.5	223 1.5	347 1.5	587 1.5			
	Blind	43 1.5	79 1.5	48 1.5	90 1.5	115 1.5	159 1.5	232 1.5	363 1.5	649 1.5			
	S.R. 90° Elbow	113	194	157	238	310	435	639	995	1.0			
		4.5	4.7	4.5	4.7	5	5.2	5.4	5.7				
	L.R. 90° Elbow	148 5.3		202 5.3	283 5.3								
\triangle	45° Elbow	97 3.9	164 4	127 3.9	203 4	215 4.1	360 4.4	507 4.5	870 4.8				
Ē	Тее	168 6.8	289 7.1	230 6.8	337 7.1	445 7.5	610 7.8	978 8.1	1465 8.6				
$\vdash \downarrow \rangle$	Flanged Bonnet Gate	251 7.5	583 8.1	305 4.5	505 5.1	703 6	960 6.3	1180 6.6	2740 7				
$\vdash \!$	Flanged Bonnet – Globe or Angle	317 8.4	554 8.6	475 5.4	505 5.5	610 5.9	1130 6.3	1160 6.3	2865 7				
	Flanged Bonnet – Check	302 8.4	454 8.6	235 5.2	310 5.3	475 5.6	725 6	1140 6.4	2075 7				
$\vdash \!\!\!\! \frown \!\!\!\! $	Pressure Seal – Bonnet, Gate						925 4.5	1185 4.7	2345 5.5				
$\vdash \!$	Pressure Seal – Bonnet, Globe							1550 4	1680 5				

- Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.
- Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.
- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.
- Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

WEIGHT OF PIPING MATERIALS - 10" PIPE (10.750" O.D.)

Ріре															
Sch./Wall Designation>	5S	10S		20	30	40/STD	60	80/XS	100	120	140	160			
Thickness In.	0.134	0.165	0.219	0.25	0.307	0.365	0.5	0.593	0.718	0.843	1	1.125			
Pipe LbslFt	15.15	18.70	24.63	28.04	34.24	40.5	54.7	64.3	76.9	89.2	104.1	115.7			
Water Lbs/Ft	37.4	36.9	36.2	35.77	34.98	34.1	32.3	31.1	29.5	28	26.1	24.6			
	Welded Fittings - Line 1: Weight in Pounds, Line 2: Insulation Factor														
L.R. 90° Elbow	29.2 2.5	36 2.5				84 2.5	112 2.5					230 2.5			
S.R. 90° Elbow	20.3 1.7	24.9 1.7				62.2 1.7	74 1.7								
L.R. 45° Elbow	14.6 1	18 1				42.4 1	53.8 1					109 1			
Tee	30 2.1	37 2.1				104 2.1	132 2.1					222 2.1			
Lateral	47.5 4.4	70 4.4				124 4.4	200 4.4								
Reducer	8.1 0.6	14 0.6				23.2 0.6	31.4 0.6					58 0.6			
Cap	3.8 1.3	4.7 1.3				20 1.3	26.3 1.3					59 1.3			

	Pipe Insulation												
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200	
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1½ 5.2	1½ 5.2	2 7.07	2½ 8.93	2½ 8.93	3 11	3½ 13.2	3½ 13.2	4 15.5	4 15.5	4½ 18.1	
Combination	Nom. Thick., In. Lbs/Ft						3 15.4	3½ 19.3	3½ 19.3	4 23	4 23	4½ 27.2	

	CAST IRON & STEEL FITTI	ngs - Lii	1: WE	eight in I	Pounds,	LINE 2:	Insulati	on F act	OR		
		Pi	ressure	Rating	(PSI)						1
		Cast	Iron				– Ste	el			1
		125	250	150	300	400	600	900	1500	2500	
	Screwed or	45	93	50	100	117	213	293	528	1148	1
	Slip-On	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
	Welding Neck			59	110	152	225	316	546	1291	
				1.5	1.5	1.5	1.5	1.5	1.5	1.5	
	Lap Joint			50	110	138	231	325	577	1120	L
				1.5	1.5	1.5	1.5	1.5	1.5	1.5	
	Blind	66	120	77	146	181	267	338	599	1248	L
		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
	S.R. 90° Elbow	182	306	240	343	462	747	995			L
		4.8	4.9	4.8	4.9	5.2	5.6	5.8			
Λ	L.R. 90° Elbow	237		290	438						L
		5.8		5.8	5.8						
\land	45° Elbow	152	256	185	288	332	572	732			L
<u>Lask</u>		4.1	4.2	4.1	4.2	4.3	4.6	4.7			
المحط	Тее	277	446	353	527	578	1007	1417			L
		7.2	7.4	7.2	7.4	7.8	8.4	8.7			
	Flanged Bonnet	471	899	455	750	1035	1575	2140	3690		L
	Gate	7.7	8.3	4.5	5	6	6.9	7.1	8		
	Flanged Bonnet	541	943	485	855	1070	1500	2500	4160		L
	 Globe or Angle 	9.1	9.1	4.5	5.5	6	6.3	6.8	8		
_ m_ \	Flanged Bonnet	453	751	370	485	605	1030	1350	2280		
\$\$	– Check	9.1	9.1	6	6.1	6.3	6.8	7	7.5		
	Pressure Seal						1450	1860	3150		
	– Bonnet, Gate						4.9	5.5	6		
	Pressure Seal							1800	1910		
	– Bonnet, Globe							5	6		
											1

 Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.

 Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.

 Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.

• To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.

- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.

• All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.

Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

Ріре														
Sch./Wall Designation>	5S	10S	20	30	Std.	40	XS	60	80	120	140	160		
Thickness In.	0.156	180	0.25	0.33	0.375	0.406	0.5	0.562	0.687	1	1.125	1.312		
Pipe LbslFt	20.99	24.20	33.38	43.8	49.6	53.5	65.4	73.2	88.5	125.5	139.7	160.3		
Water Lbs/Ft	52.7	52.2	51.1	49.7	49	48.5	47	46	44	39.3	37.5	34.9		
		WELDED	Fittings - L	INE 1: WEIG	ht in P oun	ds, Line 2:	INSULATION	Factor						
L.R. 90° Elbow	51.2 3	57 3			122 3		156 3					375 3		
S.R. 90° Elbow	33.6 2	38.1 2			82 2		104 2							
L.R. 45° Elbow	25.5 1.3	29 1.3			60.3 1.3		78 1.3					182 1.3		
Tee	46.7 2.5	54 2.5			162 2.5		180 2.5					360 2.5		
Lateral	74.7 5.4	86.2 5.4			180 5.4		273 5.4							
Reducer	14.1 0.7	20.9 0.7			33.4 0.7		43.6 0.7					94 0.7		
Сар Сар	6.2 1.5	7.1 1.5			29.5 1.5		38.1 1.5					95 1.5		

Pipe Insulation												
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1½ 6.04	1½ 6.04	2 8.13	2½ 10.5	3 12.7	3 12.7	3½ 15.1	4 17.9	4 17.9	4½ 20.4	4½ 20.4
Combination	Nom. Thick., In. Lbs/Ft						3 17.7	3½ 21.9	4 26.7	4 26.7	4½ 31.1	4½ 31.1

Cast Iron & Steel Fittings - Line 1: Weight in Pounds, Line 2: Insulation Factor												
		P	ressure	Rating	(PSI)							
		Cas	t Iron				– Ste	el ——-				
		125	250	150	300	400	600	900	1500	2500		
a la compa	Screwed or Slip-On	58 1.5	123 1.5	71 1.5	140 1.5	164 1.5	261 1.5	388 1.5	820 1.5	1611 1.5		
	Welding Neck			87 1.5	163 1.5	212 1.5	272 1.5	434 1.5	843 1.5	1919 1.5		
	Lap Joint			71 1.5	164 1.5	187 1.5	286 1.5	433 1.5	902 1.5	1583 1.5		
	Blind	95 1.5	165 1.5	117 1.5	209 1.5	261 1.5	341 1.5	475 1.5	928 1.5	1775 1.5		
	S.R. 90° Elbow	257 5	430 5.2	345 5	509 5.2	669 5.5	815 5.8	1474 6.2				
	L.R. 90° Elbow	357 6.2		485 6.2	624 6.2			1598 6.2				
	45° Elbow	227 4.3	360 4.3	282 4.3	414 4.3	469 4.5	705 4.7	1124 4.8				
Ē	Тее	387 7.5	640 7.8	513 7.5	754 7.8	943 8.3	1361 8.7	1928 9.3				
$\vdash \downarrow \rangle$	Flanged Bonnet Gate	687 7.8	1298 8.5	635 4	1015 5	1420 5.5	2155 7	2770 7.2	4650 8			
$\vdash \!$	Flanged Bonnet – Globe or Angle	808 9.4	1200 9.5	710 5	1410 5.5							
	Flanged Bonnet – Check	674 9.4	1160 9.5	560 6	720 6.5		1410 7.2	2600 8	3370 8			
$\vdash \downarrow \rangle$	Pressure Seal – Bonnet, Gate						1 975 5.5	2560 6	4515 7			
	Pressure Seal – Bonnet, Globe											

- Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.
- Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.
- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.
- Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

WEIGHT OF PIPING MATERIALS - 14" PIPE (14" O.D.)

160 1.406 189.1 42.6

					Pipe							
Sch./Wall Designation>	58	10S	10	20	30/Std.	40	XS	60	80	120	140	
Thickness In.	0.156	188	0.25	0.312	0.375	438	0.5	0.593	0.75	1.093	1.25	-
Pipe LbslFt	23.0	27.7	36.71	45.7	54.6	63.4	72.1	84.9	106.1	150.7	170.2	-
Water Lbs/Ft	63.7	63.1	62.06	60.92	59.7	58.7	57.5	55.9	53.2	47.5	45	
Welded Fr	ttings - Line 1	: Weight in	POUNDS, L	line 2: Insu	LATION FACT	OR						
L.R. 90° Elbow	65.6 3.5	78 3.5			157 3.5		200 3.5					
S.R. 90° Elbow	43.1 2.3	51.7 2.3			108 2.3		135 2.3					
L.R. 45° Elbow	32.5 1.5	39.4 1.5			80 1.5		98 1.5					
Tee	49.4 2.8	59.6 2.8			196 2.8		220 2.8					
Lateral	94.4 5.8	113 5.8			218 5.8		340 5.8					
Reducer	25 1.1	31.2 1.1			63 1.1		83 1.1					
Cap	7.6 1.7	9.2 1.7			35.3 1.7		45.9 1.7					

Pipe Insulation												
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1½ 6.16	1½ 6.16	2 8.38	2½ 10.7	3 13.1	3 13.1	3½ 15.8	4 18.5	4 18.5	4½ 21.3	4½ 21.3
Combination	Nom. Thick., In. Lbs/Ft						3 18.2	3½ 22.8	4 27.5	4 27.5	4½ 32.4	4½ 32.4

	CAST IRON & STEEL FITTI	ngs - Lii	NE 1: WI	eight in I	Pounds,	LINE 2:	INSULAT	ion Fact	OR		
		Pi	ressure	Rating	(PSI)						l
		Cast	t Iron				— Ste	el ——			
		125	250	150	300	400	600	900	1500	2500	1
	Screwed or	90	184	95	195	235	318	460	1016		1
	Slip-On	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5		
	Welding Neck			130	217	277	406	642	1241		1
				1.5	1.5	1.5	1.5	1.5	1.5		
	Lap Joint			119	220	254	349	477	1076		1
				1.5	1.5	1.5	1.5	1.5	1.5		l
	Blind	125	239	141	267	354	437	574			1
		1.5	1.5	1.5	1.5	1.5	1.5	1.5			l
	S.R. 90° Elbow	360	617	497	632	664	918	1549			
dand "		5.3	5.5	5.3	5.5	5.7	5.9	6.4			l
Λ	L.R. 90° Elbow	480	767	622	772						1
		6.6	6.6	6.6	6.6						l
A	45° Elbow	280	497	377	587	638	883	1246			1
<u></u> ~		4.3	4.4	4.3	4.4	4.6	4.8	4.9			l
المعدر ^ا	Tee	540	956	683	968	1131	1652	2318			1
		8	8.4	8	8.3	8.6	8.9	9.6			l
	Flanged Bonnet	921	1762	905	1525	1920	2960	4170	6425		1
	Gate	7.9	8.8	4.9	6	6.3	7	8	8.8		l
	Flanged Bonnet	1171									1
	– Globe or Angle	9.9									l
	Flanged Bonnet	885		1010	1155						1
⋓	– Check	9.9		5	5.2						l
	Pressure Seal						2620	3475	6380		1
	– Bonnet, Gate						6	6.5	7.5		
	Pressure Seal										1
1 ≦√√,)	– Bonnet, Globe										
											1

 Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.

 Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.

- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.

Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

Рире													
Sch./Wall Designation>	5 S	10S	10	20	30/Std	40	60/XS	80	100	120	140	160	
Thickness In.	0.165	0.188	0.25	0.312	0.375	0.5	0.656	0.843	1.031	1.218	1.438	1.593	
Pipe LbslFt	28.0	32.0	42.1	52.4	62.6	82.8	107.5	136.5	164.8	192.3	223.6	245.1	
Water Lbs/Ft	83.5	83	81.8	80.5	79.1	76.5	73.4	69.7	66.1	62.6	58.6	55.9	
Welded Fittings - Line 1: Weight in Pounds, Line 2: Insulation Factor													

	Welded Fittings - L	ine 1: Weigi	it in P ound	os, Line 2:	INSULATION	Factor	
(7	L.R. 90° Elbow	89.8 4	102 4			208 4	270 4
(i)	S.R. 90° Elbow	59.7 2.5	67.7 2.5			135 2.5	17 7 2.5
	L.R. 45° Elbow	44.9 1.7	51 1.7			104 1.7	136 1.7
	Tee	66.8 3.2	75.9 3.2			250 3.2	278 3.2
	Lateral	127 6.7	144 6.7			275 6.7	431 6.7
	Reducer	31.3 1.2	35.7 1.2			77 1.2	102 1.2
\Box	Сар	10.1 1.8	11.5 1.8			44.3 1.8	57 1.8

	Pipe Insulation											
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1½ 6.9	1½ 6.9	2 9.33	2½ 12	3 14.6	3 14.6	3½ 17.5	4 20.5	4 20.5	4½ 23.6	4½ 23.6
Combination	Nom. Thick., In. Lbs/Ft						3 20.3	3½ 25.2	4 30.7	4 30.7	4½ 36	4½ 36

Pressure Rating (PSI) Cast Iron Steel 125 250 150 300 400 600 900 1500 125 250 150 300 400 600 900 1500 Screwed or Slip-On 114 233 107 262 310 442 559 1297 1.5	
125 250 150 300 400 600 900 1500 Screwed or Slip-On 114 233 107 262 310 442 559 1297 1.5	
Screwed or Slip-On 114 1.5 233 1.5 107 1.5 262 1.5 310 1.5 442 1.5 559 1.5 1297 1.5 Welding Neck Image: Screwed or Slip-On Image: Screwed or	
Slip-On 1.5	2500
Slip-On 1.5	
Image: Constraint of the state of the s	
Blind 174 308 184 349 455 603 719 Image: Blind 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Image: Blind 174 308 184 349 455 603 719 Image: Blind 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Image: Blind 5.5 5.8 656 958 1014 1402 1886 Image: Blind 5.5 5.8 5.5 5.8 6 6.3 6.7	
1.5 1.5 1.5 1.5 1.5 1.5 1.5 S.R. 90° Elbow 484 826 656 958 1014 1402 1886 5.5 5.8 5.5 5.8 6 6.3 6.7 L.R. 90° Elbow 684 1036 781 1058 5 5	
1.5 1.5 1.5 1.5 1.5 1.5 1.5 S.R. 90° Elbow 484 826 656 958 1014 1402 1886 5.5 5.8 5.5 5.8 6 6.3 6.7 L.R. 90° Elbow 684 1036 781 1058 5 5	
L.R. 90° Elbow 684 1036 781 1058 6 6.3 6.7	
L.R. 90° Elbow 684 1036 781 1058	
45° Elbow 374 696 481 708 839 1212 1586	
4.3 4.6 4.3 4.6 4.7 5 5	
Tee 714 1263 961 1404 1671 2128 3054 8.3 8.7 8.3 8.6 9 9.4 10	
Flanged Bonnet 1254 2321 1190 2015 2300 3675 4950 7875 Gate 8 9 5 7 7.2 7.9 8.2 9	
Flanged Bonnet – Globe or Angle	
Flanged Bonnet 1166 1225 - Check 10.5 6	
Pressure Seal32308130- Bonnet, Gate78	
Pressure Seal – Bonnet, Globe	1

- Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.
- Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.
- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.
- Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

WEIGHT OF PIPING MATERIALS - 18" PIPE (18" O.D.)

					Pipe							
Sch./Wall Designation>	58	10S	10	20	Std.	30	XS	40	60	80	120	160
Thickness In.	0.165	0.188	0.25	0.312	0.375	0.438	0.5	0.562	750	937	1.375	1.781
Pipe LbslFt	31.0	36.0	47.4	59.0	70.6	82.1	93.5	104.8	138.2	170.8	244.1	308.5
Water Lbs/Ft	106.2	105.7	104.3	102.8	101.2	99.9	98.4	97	92.7	88.5	79.2	71
Welded Fittin	igs - Line 1:	WEIGHT IN	POUNDS, L	ine 2: I nsui	ATION FACTO	OR						
L.R. 90° Elbow	114 4.5	129 4.5			256 4.5		332 4.5					
S.R. 90° Elbow	75.7 2.8	85.7 2.8			176 2.8		225 2.8					
L.R. 45° Elbow	57.2 1.9	64.5 1.9			132 1.9		168 1.9					
Tee	83.2 3.6	94.7 3.6			282 3.6		351 3.6					
Lateral	157 7.5	179 7.5			326 7.5		525 7.5					
Reducer	42.6 1.3	48.5 1.3			94 1.3		123 1.3					

	Pipe Insulation												
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200	
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1½ 7.73	1½ 7.73	2 10.4	2½ 13.3	3 16.3	3 16.3	3½ 19.3	4 22.6	4 22.6	4½ 25.9	4½ 25.9	
Combination	Nom. Thick., In. Lbs/Ft						3 22.7	3½ 28	4 33.8	4 33.8	4½ 39.5	4½ 39.5	

57

2.1

75

2.1

	CAST IRON & STEEL FITTI	ngs - Lii	NE 1: WI	ight in I	Pounds,	LINE 2:	Insulat	ion F act	OR		l
		Pi	ressure	Rating	(PSI)						1
		Cas	t Iron				— Ste	el ——			
		125	250	150	300	400	600	900	1500	2500	1
	Screwed or	125		139	331	380	573	797	1694		1
	Slip-On	1.5		1.5	1.5	1.5	1.5	1.5	1.5		
	Welding Neck			159	355	430	652	1074	2069		l
				1.5	1.5	1.5	1.5	1.5	1.5		
of to	Lap Joint			165	355	415	566	820	1769		l
				1.5	1.5	1.5	1.5	1.5	1.5		
	Blind	209	396	228	440	572	762	1030			l
		1.5	1.5	1.5	1.5	1.5	1.5	1.5			
	S.R. 90° Elbow	599	1060	711	1126	1340	1793	2817			l
		5.8	6	5.8	6	6.2	6.6	7			
Δ	L.R. 90° Elbow		1350	941	1426						l
			7.4	7.4	7.4						
\wedge	45° Elbow	439	870	521	901	1040	1543	2252			l
		4.4	4.7	4.4	4.7	4.8	5	5.2			
المعط	Tee	879	1625	1010	1602	1909	2690	4327			l
		8.6	9	8.6	9	9.3	9.9	10.5			
	Flanged Bonnet	1629	2578	1510	2505	3765	4460	6675			l
· ~⊮√	Gate	8.2	9.3	6	6.5	7	7.8	8.5			
	Flanged Bonnet										l
	 Globe or Angle 										
	Flanged Bonnet	1371									
V	– Check	10.5									
	Pressure Seal						3100	3400	4200		
	– Bonnet, Gate						5.5	5.6	6		
	Pressure Seal										
	– Bonnet, Globe										
		I	I	I			1	1	1		4

 Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.

- Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.
- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.

Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

53

Сар

J

12.7

2.1

14.5

2.1

					Pipe							
Sch./Wall Designation>	5S	10S	10	20/Std.	30/XS	40	60	80	100	120	140	160
Thickness In.	0.188	0.218	0.25	0.375	0.5	0.593	0.812	1.031	1.281	1.5	1.75	1.968
Pipe LbslFt	40.0	46.0	52.7	78.6	104.1	122.9	166.4	208.9	256.1	296.4	341.1	379.0
Water Lbs/Ft	131	130.2	129.5	126	122.8	120.4	115	109.4	103.4	98.3	92.6	87.9
Welded Fittings - Line 1:	3											

	Nelded Fittings - Line 1:	WEIGHT IN F	Pounds, Lii	NE 2: INSUL	ation Factoi	1
Ű	L.R. 90° Elbow	1 60 5	185 5		322 5	438 5
G	S.R. 90° Elbow	106 3.4	122 3.4		238 3.4	278 3.4
	L.R. 45° Elbow	80.3 2.1	92.5 2.1		160 2.1	228 2.1
	Tee	112 4	130 4		378 4	490 4
	Lateral	228 8.3	265 8.3		396 8.3	625 8.3
	Reducer	71.6 1.7	87.6 1.7		142 1.7	186 1.7
\Box	Сар	17.7 2.3	20.5 2.3		71 2.3	93 2.3

	Pipe Insulation												
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200	
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1½ 8.45	1½ 8.45	2 11.6	2½ 14.6	3 17.7	3 17.7	3½ 21.1	4 24.6	4 24.6	4½ 28.1	4½ 28.1	
Combination	Nom. Thick., In. Lbs/Ft						3 24.7	3½ 30.7	4 37	4 37	4½ 43.1	4½ 43.1	

	CAST IRON & STEEL FITTI	ngs - Lii	NE 1: WI	eight in I	Pounds,	LINE 2:	INSULATI	on F act	OR	
		P	ressure	Rating	(PSI)					
		Cas	t Iron				– Ste	el ——		
		125	250	150	300	400	600	900	1500	2500
	Screwed or	153		180	378	468	733	972	2114	
	Slip-On	1.5		1.5	1.5	1.5	1.5	1.5	1.5	
	Welding Neck			195 1.5	431 1.5	535 1.5	811 1.5	1344 1.5	2614 1.5	
	Lap Joint			210 1.5	428 1.5	510 1.5	725 1.5	1048 1.5	2189 1.5	
	Blind	275	487	297	545	711	976	1287		
		1.5	1.5	1.5	1.5	1.5	1.5	1.5		
	S.R. 90° Elbow	792	1315	922	1375	1680	2314	3610		
<u>L</u>		6	6.3	6	6.3	6.5	6.9	7.3		
A	L.R. 90° Elbow	1132	1725	1352	1705					
		7.8	7.8	7.8	7.8					
\land	45° Elbow	592	1055	652	1105	1330	1917	2848		
<u>Laad</u>		4.6	4.8	4.6	4.8	4.9	5.2	5.4		
المحط	Тее	1178	2022	1378	1908	2370	3463	5520		
		9	9.5	9	9.5	9.7	10.1	11		
$\leftarrow \square$	Flanged Bonnet	1934	3823	1855	3370	5700	5755			
	Gate	8.3	9.5	6	7	8	8			
$\vdash = $	Flanged Bonnet – Globe or Angle									
	Flanged Bonnet – Check	1772 11								
$\vdash\!$	Pressure Seal – Bonnet, Gate									
$\vdash \downarrow)$	Pressure Seal – Bonnet, Globe									

- Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.
- Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.
- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.
- Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

WEIGHT OF PIPING MATERIALS - 24" PIPE (24" O.D.)

2.8

160 2.343 541.9 127

				Рір	E					
Sch./Wall Designation>	5 S	10	20/Std.	XS	30	40	60	80	120	140
Thickness In.	0.218	0.25	0.375	0.5	0.562	0.687	0.968	1.218	1.812	2.062
Pipe LbslFt	55.0	63.4	94.6	125.5	140.8	171.2	238.1	296.4	429.4	483.1
Water Lbs/Ft	188.9	188	183.8	180.1	178.1	174.3	165.8	158.3	141.4	134.5
Welded Fittings - Line 1: Wei	GHT IN POUND	os, Line 2:	INSULATION	Factor						
L.R. 90° Elbow	260 6		500 6	578 6						
S.R. 90° Elbow	178 3.7		305 3.7	404 3.7						
L.R. 45° Elbow	130 2.5		252 2.5	292 2.5						
Tee	174 4.9		544 4.9	607 4.9						
Lateral	361 10		544 10	875 10						
Reducer	107 1.7		167 1.7	220 1.7						
Cap	28.6		102	134						

2.8

2.8

	Pipe Insulation												
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200	
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1½ 10	1½ 10	2 13.4	2½ 17	3 21	3 21	3½ 24.8	4 28.7	4 28.7	4½ 32.9	4½ 32.9	
Combination	Nom. Thick., In. Lbs/Ft						3 29.2	3½ 36	4 43.1	4 43.1	4½ 50.6	4½ 50.6	

	CAST IRON & STEEL FITTI	ngs - Lii	ve 1: Wi	eight in I	Pounds,	LINE 2:	Insulat	on Fact	OR		
		P	ressure	Rating	(PSI)						l
		Cas	t Iron				— Ste	el ——			
		125	250	150	300	400	600	900	1500	2500	
	Screwed or	236		245	577	676	1056	1823	3378		1
	Slip-On	1.5		1.5	1.5	1.5	1.5	1.5	1.5		
	Welding Neck			295	632	777	1157	2450	4153		l
				1.5	1.5	1.5	1.5	1.5	1.5		l
	Lap Joint			295	617	752	1046	2002	3478		l
				1.5	1.5	1.5	1.5	1.5	1.5		
	Blind	404	757	446	841	1073	1355	2442			l
		1.5	1.5	1.5	1.5	1.5	1.5	1.5			
	S.R. 90° Elbow	1231	2014	1671	2174	2474	3506	6155			
<u> </u>		6.7	6.8	6.7	6.8	7.1	7.6	8.1			
Λ	L.R. 90° Elbow	1711	2644	1821	2874						l
		8.7	8.7	8.7	8.7						
\land	45° Elbow	871	1604	1121	1634	1974	2831	5124			l
<u>Laak</u>		4.8	5	4.8	5	5.1	5.5	6			
المحط	Тее	1836	3061	2276	3161	3811	5184	9387			
		10	10.2	10	10.2	10.6	11.4	12.1			
	Flanged Bonnet	3062	6484	2500	4675	6995	8020				l
	Gate	8.5	9.8	5	7	8.7	9.5				
	Flanged Bonnet										
	 Globe or Angle 										
	Flanged Bonnet	2956									1
U	– Check	12									
	Pressure Seal										1
	– Bonnet, Gate										
	Pressure Seal										1
	– Bonnet, Globe										
									1		l

 Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.

 Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.

- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.
- Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

Pipe													
Sch./Wall Designation>		10	Std.	20/XS									
Thickness In.	0.25	0.312	0.375	0.5	0.625	0.75	0.875	1	1.125				
Pipe LbslFt	67.0	85.7	102.6	136.2	169.0	202.0	235.0	267.0	299.0				
Water Lbs/Ft	221.4	219.2	216.8	212.5	208.6	204.4	200.2	196.1	192.1				
Meren Frennes I and A Mere				F									

Welde	d Fittings - Line 1: Weig	ht in P ound	s, Line 2:	INSULATION	Factor
(i7	L.R. 90° Elbow			502 8.5	713 8.5
G	S.R. 90° Elbow			359 5	474 5
$\hat{\Box}$	L.R. 45° Elbow			269 3.5	355 3.5
	Тее			634 6.8	794 6.8
	Lateral				
	Reducer			200 4.3	272 4.3
Ð	Сар			110 4.3	145 4.3

	Pipe Insulation											
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1½ 10.4	1½ 10.4	2 14.1	2½ 18	3 21.9	3½ 26	4 30.2	4½ 34.6	5 39.1	5 39.1	6 48.4
Combination	Nom. Thick., In. Lbs/Ft						3½ 37	4½ 51.9	5½ 67.8	6 76	6½ 84.5	7 93.2

	CAST IRON & STEEL FITTI	ngs - Lin	1: WE	eight in I	Pounds,	LINE 2:	INSULATI	ION FACT	OR	
		Pr	ressure	Rating	(PSI)					
		Cast	Iron				– Ste	el ——		
		125	250	150	300	400	600	900	1500	2500
a	Screwed or			292	699	650	950	1525		
	Slip-On			1.5	1.5	1.5	1.5	1.5		
	Welding Neck			342 1.5	799 1.5	750 1.5	1025 1.5	1575 1.5		
	Lap Joint									
	Blind			567	1179	1125	1525	2200		
				1.5	1.5	1.5	1.5	1.5		
	S.R. 90° Elbow									
	L.R. 90° Elbow									
\triangle	45° Elbow									
Ц	Тее									
$\vdash \downarrow \rangle$	Flanged Bonnet Gate									
$\vdash $	Flanged Bonnet – Globe or Angle									
	Flanged Bonnet – Check									
$\vdash \!\!\!\! = \!$	Pressure Seal – Bonnet, Gate									
$\vdash $	Pressure Seal – Bonnet, Globe									

- Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.
- Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.
- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.
- Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

WEIGHT OF PIPING MATERIALS - 28" PIPE (28" O.D.)

	Ріре											
Sch./Wall Designation>		10	Std.	20/XS	30							
Thickness In.	0.25	0.312	0.375	0.5	0.625	0.75	0.875	1	1.125			
Pipe LbslFt	74.0	92.4	110.6	146.9	182.7	218.0	253.0	288.0	323.0			
Water Lbs/Ft	257.3	255	252.7	248.1	243.6	238.9	234.4	230	225.6			
Welded Fittings - Line 1: Weight in Pounds, Line 2: Insulation Factor												

VVELUE	D FITTINGS - LINE I. WEI	GHT IN FUUNDS, LINE	Z. INSULATION	FACTUR
	L.R. 90° Elbow		626 9	829 9
(i)	S.R. 90° Elbow		415 5.4	551 5.4
$\hat{\omega}$	L.R. 45° Elbow		312 3.6	413 3.6
	Тее		729 7	910 7
	Lateral			
	Reducer		210 2.7	290 2.7
\bigcirc	Сар		120	160
-			4.5	4.5

	Pipe Insulation											
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1½ 11.2	1½ 11.2	2 15.1	2½ 19.2	3 23.4	3½ 27.8	4 32.3	4½ 36.9	5 41.6	5 41.6	6 51.4
Combination	Nom. Thick., In. Lbs/Ft						3½ 39.5	4½ 55.4	5½ 72.2	6 80.9	6½ 89.8	7 99

	CAST IRON & STEEL FITTH	vgs - Lin	ie 1: We	ight in I	Pounds,	LINE 2:	Insulati	ION FACT	OR		
		Pr	essure	Rating	(PSI)						1
		Cast	Iron				– Ste	el			1
		125	250	150	300	400	600	900	1500	2500	1
	Screwed or Slip-On			334 1.5	853 1.5	780 1.5	1075 1.5	1800 1.5			
	Welding Neck			364 1.5	943 1.5	880 1.5	1175 1.5	1850 1.5			
	Lap Joint										
	Blind			669 1.5	1408 1.5	1425 1.5	1750 1.5	2575 1.5			
	S.R. 90° Elbow										
	L.R. 90° Elbow										
	45° Elbow										
Г	Тее										
$\vdash \!$	Flanged Bonnet Gate										
$\vdash \!$	Flanged Bonnet – Globe or Angle										
	Flanged Bonnet – Check										
$\vdash \downarrow \rangle$	Pressure Seal – Bonnet, Gate										
$ \leftarrow)$	Pressure Seal – Bonnet, Globe										

 Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.

 Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.

- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.

Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

			Рір	E					
Sch./Wall Designation>	5 S	10 & 10S	Std.	20/XS	30				
Thickness In.	0.25	0.312	0.375	.500	0.625	0.75	0.875	1	1.125
Pipe LbslFt	.79	98.9	118.7	157.6	196.1	234.0	272.0	310.0	347.0
Water Lbs/Ft	296.3	293.5	291	286	281.1	276.6	271.8	267	262.2
Welded Fittings -	LINE 1: WEIG	GHT IN POUNI	ds, Line 2:	INSULATION	FACTOR				
L.R. 90° Elbow	478.0 10		775 10	953 10		596 10			
S.R. 90° Elbow	319 5.9		470 5.9	644 5.9		388 5.9			
L.R. 45° Elbow	239 3.9		358 3.9	475 3.9		298 3.9			
Tee			855 7.8	1065 7.8					
Lateral									
Reducer			220 3.9	315 3.9					
Cap			125	175					
			4.8	4.8					

	Pipe Insulation											
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1½ 11.9	1½ 11.9	2 16.1	2½ 20.5	3 25	3½ 29.5	4 34.3	4½ 39.1	5 44.1	5 44.1	6 54.4
Combination	Nom. Thick., In. Lbs/Ft						3½ 42.1	4½ 58.9	5½ 76.5	6 85.7	6½ 95.1	7 104.7

	CAST IRON & STEEL FITTI	ngs - Lii	ie 1: Wi	eight in I	Pounds,	LINE 2:	Insulati	on F act	OR	
		Pi	essure	Rating	(PSI)					
		Cast	Iron				– Ste	el ——		
		125	250	150	300	400	600	900	1500	2500
	Screwed or			365	975	900	1175	2075		
	Slip-On			1.5	1.5	1.5	1.5	1.5		
	Welding Neck			410	1095	1000	1300	2150		
				1.5	1.5	1.5	1.5	1.5		
of to	Lap Joint									
	Blind			770	1665	1675	2000	3025		
				1.5	1.5	1.5	1.5	1.5		
	S.R. 90° Elbow									
1	L.R. 90° Elbow									
\wedge	45° Elbow									
<u> </u>										
	Tee									
	Flanged Bonnet									
	Gate									
	Flanged Bonnet									
	 Globe or Angle 									
	Flanged Bonnet									
U	– Check									
	Pressure Seal									
	– Bonnet, Gate									
	Pressure Seal									
	– Bonnet, Globe									
									1	

- Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.
- Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.
- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.
- Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

WEIGHT OF PIPING MATERIALS - 32" PIPE (32" O.D.)

				Pipe						
Sch./Wall Designation>		10	Std.	20/XS	30	40				
Thickness In.	0.25	0.312	0.375	0.5	0.625	688	0.75	0.875	1	1.125
Pipe LbslFt	85.0	105.8	126.7	168.2	209.4	229.9	250.0	291.0	331.0	371.0
Water Lbs/Ft	337.8	335	323.3	327	321.8	319.2	316.7	311.6	306.4	301.3
Welded Fittings - Line 1: Wei	GHT IN POUND	os, Line 2:	INSULATION	Factor				-	-	
L.R. 90° Elbow			818	1090						

(i)	L.R. 90° Elbow		818 10.5	1090 10.5
Œ	S.R. 90° Elbow		546 6.3	722 6.3
$\hat{\omega}$	L.R. 45° Elbow		408 4.2	541 4.2
	Тее		991 8.4	1230 8.4
	Lateral			
	Reducer		255 3.1	335 3.1
\bigcirc	Сар		145 5.2	190 5.2

					Pipe Ins	ULATION						
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1½ 12.7	1½ 12.7	2 17.1	2½ 21.7	3 26.5	3½ 31.3	4 36.3	4½ 41.4	5 46.6	5 46.6	6 57.5
Combination	Nom. Thick., In. Lbs/Ft						3½ 44.7	4½ 62.3	5½ 80.9	6 90.5	6½ 100.4	7 110.5

	CAST IRON & STEEL FITTH	ngs - Lin	ie 1: We	ight in	Pounds,	LINE 2:	Insulat	ION FACT	OR		
		Pr	essure	Rating	(PSI)						1
		Cast	Iron				– Ste	el			1
		125	250	150	300	400	600	900	1500	2500	1
	Screwed or Slip-On			476 1.5	1093 1.5	1025 1.5	1375 1.5	2500 1.5			1
	-					-					-
	Welding Neck			516 1.5	1228 1.5	1150 1.5	1500 1.5	2575 1.5			
<u>ما له</u>	Lap Joint										-
	Blind			951	1978	1975	2300	3650			1
				1.5	1.5	1.5	1.5	1.5			
	S.R. 90° Elbow										
	L.R. 90° Elbow										
	45° Elbow										
П	Тее										
$\vdash \!$	Flanged Bonnet Gate										
$\vdash \!$	Flanged Bonnet – Globe or Angle										
	Flanged Bonnet – Check										
$\vdash \downarrow \rangle$	Pressure Seal – Bonnet, Gate										
$\vdash \frown)$	Pressure Seal – Bonnet, Globe										

 Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.

 Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.

- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.

Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

				Pipe						
Sch./Wall Designation>		10	Std.	20/XS	30	40				
Thickness In.	0.25	0.312	0.375	0.5	625	688	0.75	0.875	1	1.125
Pipe LbslFt	90.0	112.4	134.7	178.9	222.8	244.6	266.0	310.0	353.0	395.0
Water Lbs/Ft	382	379.1	376	370.3	365	362.2	359.5	354.1	348.6	343.2

WELDE	d Fittings - Line 1: Weig	ht in Pound	s, Line 2:	NSULATION	Factor
(it	L.R. 90° Elbow			926 11	1230 11
G	S.R. 90° Elbow			617 5.5	817 5.5
	L.R. 45° Elbow			463 4.4	615 4.4
	Tee			1136 8.9	1420 8.9
	Lateral				
	Reducer			270 3.3	355 3.3
\bigcirc	Сар			160 5.6	210 5.6

	Pipe Insulation											
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1½ 13.4	1½ 13.4	2 18.2	2½ 23	3 28	3½ 33.1	4 38.3	4½ 43.7	5 49.1	5 49.1	6 60.5
Combination	Nom. Thick., In. Lbs/Ft						3½ 47.2	4½ 65.8	5½ 85.3	6 95.4	6½ 105.7	7 116.3

	CAST IRON & STEEL FITTI	ngs - Lii	ie 1: Wi	eight in I	Pounds,	LINE 2:	Insulati	on F act	OR	
		Pi	ressure	Rating	(PSI)					
		Cast	Iron				– Ste	el ——-		
		125	250	150	300	400	600	900	1500	2500
	Screwed or			515	1281	1150	1500	2950		
	Slip-On			1.5	1.5	1.5	1.5	1.5		
	Welding Neck			560	1406	1300	1650	3025		
				1.5	1.5	1.5	1.5	1.5		
	Lap Joint									
	Blind			1085	2231	2250	2575	4275		
				1.5	1.5	1.5	1.5	1.5		
	S.R. 90° Elbow									
	L.R. 90° Elbow									
\triangle	45° Elbow									
Г	Тее									
$\vdash \downarrow \rangle$	Flanged Bonnet Gate									
$\vdash $	Flanged Bonnet – Globe or Angle									
	Flanged Bonnet – Check									
$\vdash\!$	Pressure Seal – Bonnet, Gate									
$\vdash \frown)$	Pressure Seal – Bonnet, Globe									

- Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.
- Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.
- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.
- Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

WEIGHT OF PIPING MATERIALS - 36" PIPE (36" O.D.)

	Ріре										
Sch./Wall Designation>		10	Std.	20/XS	30	40					
Thickness In.	0.25	0.312	0.5	0.625	0.75	0.875	1	1.125			
Pipe LbslFt	96.0	119.1	142.7	189.6	236.1	282.4	328.0	374.0	419.0		
Water Lbs/Ft	429.1	425.9	416.6	411	405.1	399.4	393.6	387.9			
Welded Fittings - Line 1: Wei	Welded Fittings - Line 1: Weight in Pounds, Line 2: Insulation Factor										

Welde	d Fittings - Line 1: Weig	ght in Pound	is, Line 2:	INSULATION	Factor
(7	L.R. 90° Elbow			1040 12	1380 12
(i	S.R. 90° Elbow			692 5	913 5
\square	L.R. 45° Elbow			518 4.8	686 4.8
	Тее			1294 9.5	1610 9.5
	Lateral				
	Reducer			340 3.6	360 3.6
\bigcirc	Сар			175 6	235 6

	Pipe Insulation											
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1½ 14.2	1½ 14.2	2 19.2	2½ 24.2	3 29.5	3½ 34.8	4 40.3	4½ 45.9	5 51.7	5 51.7	6 63.5
Combination	Nom. Thick., In. Lbs/Ft						3½ 49.8	4½ 69.3	5½ 89.7	6 100.2	6½ 111	7 122

	CAST IRON & STEEL FITTH	ngs - Lin	ie 1: Wi	eight in I	Pounds,	LINE 2:	Insulati	on Fact	OR		
		Pr	essure	Rating	(PSI)						1
		Cast	Iron				— Ste	el ——]
		125	250	150	300	400	600	900	1500	2500	
	Screwed or			588	1485	1325	1600	3350			
	Slip-On			1.5	1.5	1.5	1.5	1.5			
	Welding Neck			628	1585	1475	1750	3450			
				1.5	1.5	1.5	1.5	1.5			
	Lap Joint										
	Blind			1233	2560	2525	2950	4900			
				1.5	1.5	1.5	1.5	1.5			
	S.R. 90° Elbow										
											•
Δ	L.R. 90° Elbow										
\triangle	45° Elbow										ŀ
المسل	Тее										1
	Flanged Bonnet Gate										ŀ
	Flanged Bonnet										1
	– Globe or Angle										
_ ¶_∕	Flanged Bonnet										
╚	– Check										
	Pressure Seal										1
	– Bonnet, Gate										
	Pressure Seal										
	– Bonnet, Globe										
L											ц.

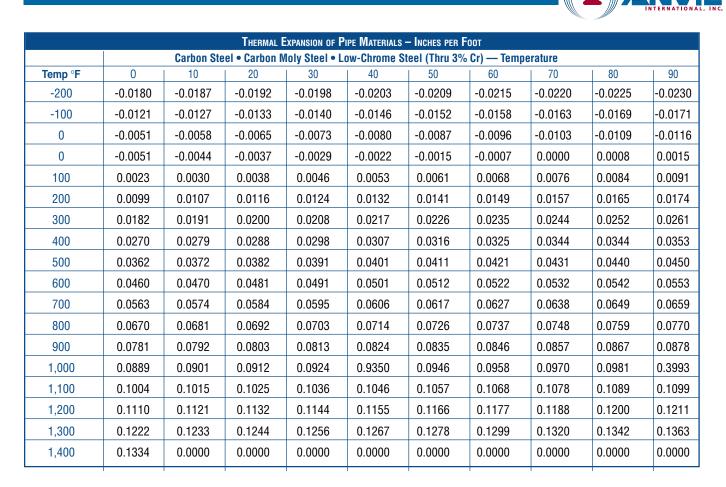
 Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.

 Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.

- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.

Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.

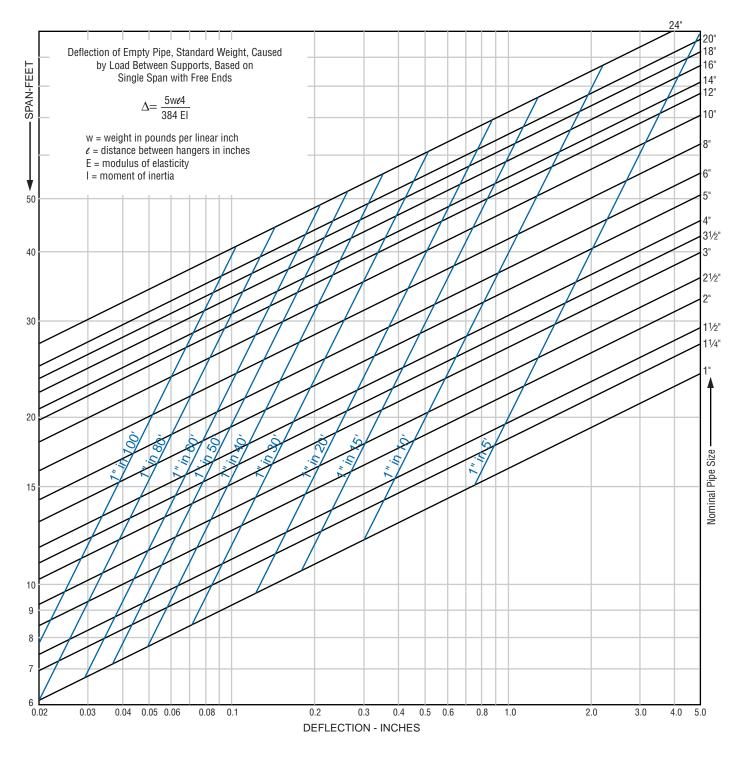
			Pipe					
Sch./Wall Designation>		Std.	20/XS	30	40			
Thickness In.	0.25	0.375	0.5	0.625	0.75	1	1.25	1.5
Pipe LbslFt	112.0	166.7	221.6	276.0	330.0	438.0	544.0	649.0
Water Lbs/Ft	586.4	578.7	571.7	565.4	558.4	544.8	531.2	517.9


WELDED FITTINGS - LINE 1: WEIGHT IN POUNDS, LINE 2: INSULATION FACTOR Image: L.R. 90° Elbow 1420 1880 Image: S.R. 90° Elbow 1079 1430 Image: S.R. 90° Elbow 9 9 Image: L.R. 45° Elbow 707 937 Image: L.R. 45° Elbow 1870 2415 Image: Lateral Image: Lateral Image: Lateral Image: Reducer 310 410 Image: Cap 230 300 Image: T.S. 7.5 7.5						
15 15 Image: S.R. 90° Elbow 1079 1430 Image: S.R. 90° Elbow 9 9 Image: S.R. 90° Elbow 707 937 Image: S.R. 45° Elbow 707 6 Image: S.R. 90° Elbow 1870 2415 Image: S.R. 90° Elbow 1870 410 Image: S.R. 90° Elbow 190 4.5 Image: S.R. 90° Elbow 190 4.5 Image: S.R. 90° Elbow 230 300	WELDE	d Fittings - Line 1: Weig	ht in Pound	s, Line 2:	NSULATION	Factor
Image: Point of the sector	(i)	L.R. 90° Elbow				
Lateral 6 6 Reducer 310 410 Cap 230 300	(j	S.R. 90° Elbow				
Lateral 310 410 Reducer 310 4.5 Cap 230 300		L.R. 45° Elbow				
Reducer 310 4.5 410 4.5 Cap 230 300		Тее		1870	2415	
4.5 4.5 Cap 230 300		Lateral				
		Reducer				
	\Box	Сар				

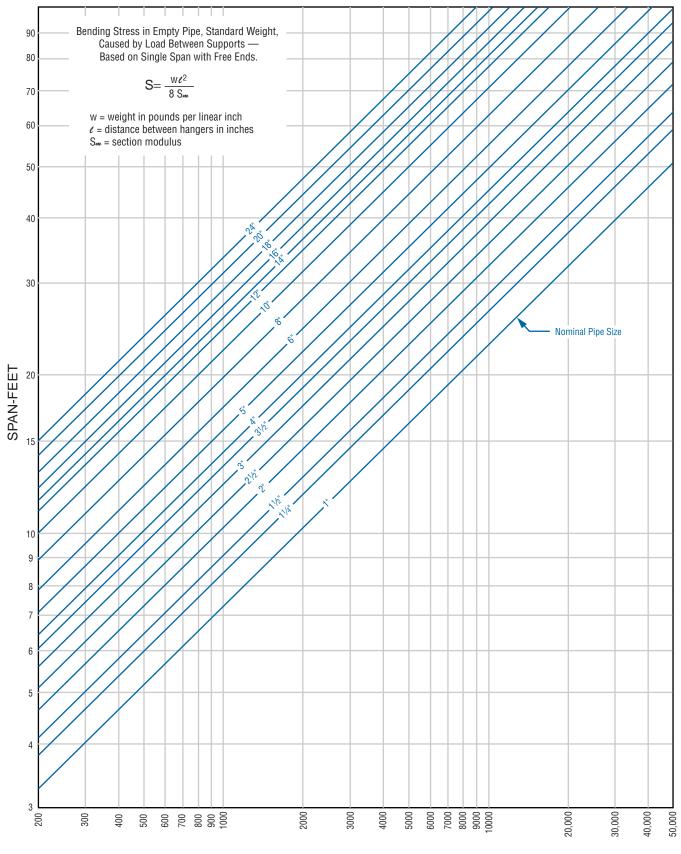
	Pipe Insulation												
Temp. Range>		100-199	200-299	300-399	400-499	500-599	600-699	700-799	800-899	900-999	1,000-1,099	1,100-1,200	
85% Magnesia Calcium Silicate	Nom. Thick., In. Lbs./Ft	1½ 16.5	1½ 16.5	2 22.2	2½ 28	3 34	3½ 40.1	4 46.4	4½ 52.7	5 59.2	5 59.2	6 72.6	
Combination	Nom. Thick., In. Lbs/Ft						3½ 57.4	4½ 79.7	5½ 102.8	6 114.8	6½ 126.9	7 139.3	

	CAST IRON & STEEL FITTI	ngs - Lii	1: WI	EIGHT IN	Pounds,	LINE 2:	Insulati	on Fact	OR	
		Pi	ressure	Rating	(PSI)					
		Cast	Iron				– Ste	el		
		125	250	150	300	400	600	900	1500	2500
a Ta	Screwed or			792	1895	1759	2320			
	Slip-On			1.5	1.5	1.5	1.5			
	Welding Neck			862	2024	1879	2414			
				1.5	1.5	1.5	1.5			
	Lap Joint									
	Blind			1733	3449	3576	4419			
	2			1.5	1.5	1.5	1.5			
	S.R. 90° Elbow									
	L.R. 90° Elbow									
\triangle	45° Elbow									
Г	Тее									
$\vdash \!$	Flanged Bonnet Gate									
$\vdash $	Flanged Bonnet – Globe or Angle									
	Flanged Bonnet – Check									
$\vdash\!$	Pressure Seal – Bonnet, Gate									
$\vdash \!$	Pressure Seal – Bonnet, Globe									

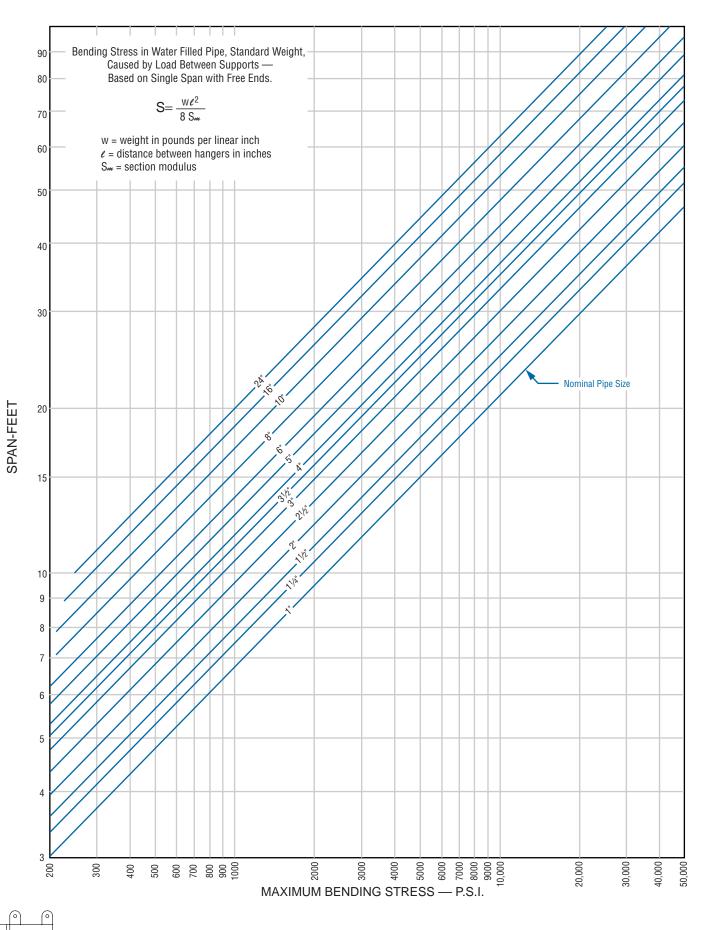
- Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of materials.
- Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cu. foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomaceous earth at 21 lbs/cu. foot and the outer layer at 11 lbs/ cubic foot.
- Insulation weights include allowances for wire, cement, canvas, bands and paint but not special surface finishes.
- To find the weight of covering on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe.
- Valve weights are approximate. Whenever possible, obtain weights from the manufacturer.
- Cast iron valve weights are for flanged end valves; steel weights for welding end valves.
- All flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make up all joints.
- Note: **Boldface type** is weight in pounds and light type underneath is weight factor for insulation.


THERMAL EXPANSION OF PIPE MATERIALS

			THERMAL E	Expansion of P	ipe Materials	– Inches per I	оот			
		Carbon Ste	el • Carbon N	loly Steel • L	ow-Chrome S	teel (Thru 3%	o Cr) — Temp	erature		
Temp °F	0	10	20	30	40	50	60	70	80	90
-200	-0.0180	-0.0187	-0.0192	-0.0198	-0.0203	-0.0209	-0.0215	-0.0220	-0.0225	-0.0230
-100	-0.0121	-0.0127	-0.0133	-0.0140	-0.0146	-0.0152	-0.0158	-0.0163	-0.0169	-0.0171
0	-0.0051	-0.0058	-0.0065	-0.0073	-0.0080	-0.0087	-0.0096	-0.0103	-0.0109	-0.0116
0	-0.0051	-0.0044	-0.0037	-0.0029	-0.0022	-0.0015	-0.0007	0.0000	0.0008	0.0015
100	0.0023	0.0030	0.0038	0.0046	0.0053	0.0061	0.0068	0.0076	0.0084	0.0091
200	0.0099	0.0107	0.0116	0.0124	0.0132	0.0141	0.0149	0.0157	0.0165	0.0174
300	0.0182	0.0191	0.0200	0.0208	0.0217	0.0226	0.0235	0.0244	0.0252	0.0261
400	0.0270	0.0279	0.0288	0.0298	0.0307	0.0316	0.0325	0.0344	0.0344	0.0353
500	0.0362	0.0372	0.0382	0.0391	0.0401	0.0411	0.0421	0.0431	0.0440	0.0450
600	0.0460	0.0470	0.0481	0.0491	0.0501	0.0512	0.0522	0.0532	0.0542	0.0553
700	0.0563	0.0574	0.0584	0.0595	0.0606	0.0617	0.0627	0.0638	0.0649	0.0659
800	0.0670	0.0681	0.0692	0.0703	0.0714	0.0726	0.0737	0.0748	0.0759	0.0770
900	0.0781	0.0792	0.0803	0.0813	0.0824	0.0835	0.0846	0.0857	0.0867	0.0878
1,000	0.0889	0.0901	0.0912	0.0924	0.9350	0.0946	0.0958	0.0970	0.0981	0.3993
1,100	0.1004	0.1015	0.1025	0.1036	0.1046	0.1057	0.1068	0.1078	0.1089	0.1099
1,200	0.1110	0.1121	0.1132	0.1144	0.1155	0.1166	0.1177	0.1188	0.1200	0.1211
1,300	0.1222	0.1233	0.1244	0.1256	0.1267	0.1278	0.1299	0.1320	0.1342	0.1363
1,400	0.1334	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000



Values are plotted for the pipes empty since this more nearly approaches the condition that exists for pocketing of condensation. Although the weight of fluid carried by the pipe will cause an increase in the deflection of the pipe between supports, this increased sag disappears during drainage. Therefore, the deflection produced by the weight of empty pipe should be considered in determining slope for drainage.


This chart is based on E = 29,000,000 P.S.I.

MINIMUM DISTANCE TO FIRST RIGID HANGER

$\int \Delta x$	(0.D. of Pipe) x 10 ⁶
- V —	1.6 x S

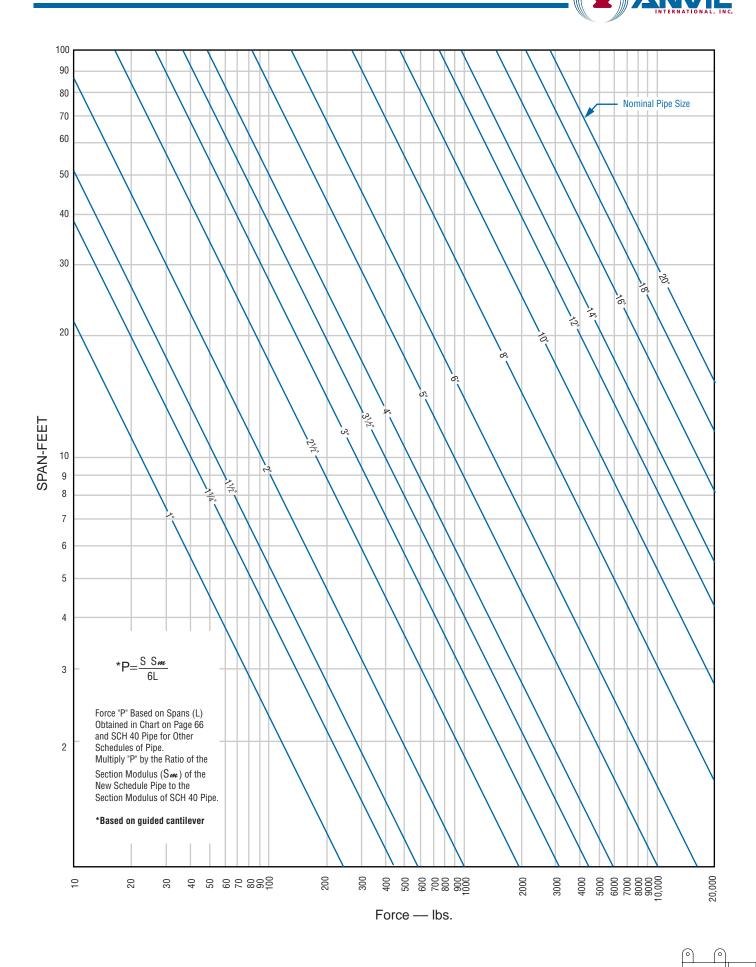
S = 10,000 p.s.i

								Pip	e Size,	Pipe O.I).							
		1 1.315	1¼ 1.660	1½ 1.900	2 2.375	2½ 2.875	3 3.5	3½ 4	4 4.5	5 5.563	6 6.625	8 8.625	10 10.75	12 12.75	14 14	16 16	18 18	20 20
	1⁄4	4½	5	5½	6	6½	7½	8	8 ½	9 ½	10	11½	13	14	15	16	17	17½
	1⁄2	6½	7	7½	8 ½	9½	10½	11	12	13	1 4½	16½	18 ½	20	21	22 ½	23 ½	25
	3⁄4	8	9	9 ½	10½	11 ½	13	13½	1 4½	16	1 7½	20	22 ¹ / ₂	24 ½	25 ½	27 ½	29	30½
	1	9	10	11	12	13 ½	15	16	17	18 ½	20 ½	23	26	28	29 ½	31 ½	33 ½	35 ½
	1 ¼	10	11½	12	13½	15	16½	17 ½	19	21	23	26	29	31 ½	33	35½	37 ½	39 ½
	1 ½	11	12 ½	13½	15	16 ½	18	19 ½	20 ½	23	25	28 ½	31 ½	34 ½	36	38 ½	41	43 ½
	1 ¾	12	13 ½	14 ½	16	17 ½	19 ½	21	22	24 ½	27	30 ½	34 ½	37 ½	39	42	44 ½	47
	2	13	14 ½	15½	17	19	21	22 ¹ ⁄2	23 ¹ ⁄2	26 ½	29	33	36 ½	40	42	44½	47½	50
Deflection	2¼	13½	15½	16½	18½	20	22	23 ½	25	28	30 ½	35	39	42 ½	44 ½	47 ½	50½	53
Defle	2 ¹ / ₂	14½	16	17	19½	21	23 ½	25	26 ½	29 ½	32	36 ½	41	44½	47	50	53	56
	2³⁄ 4	15	17	18	20	22	24½	26	28	31	33 ½	38 ½	43	47	49	52 ½	55½	58½
	3	15½	17 ½	19	21	23	25 ½	27 ½	29	32 ½	35	40	45	49	51	55	58	61
	3 ½	17	19	20½	23	25	27 ½	29 ½	31½	35	38	43 ½	48½	53	55½	59	62 ½	66
	4	18	20 ½	22	24 ½	27	29 ½	31½	33½	37 ½	40½	46½	52	56½	59	63	67	70½
	4½	19	21 ½	23	26	28 ½	31½	33½	35½	39 ½	43	49½	55	60	62 ½	67	71	75
	5	20 ½	23	24 ½	27	30	33	35½	37 ½	41½	45½	52	58	63	66	70½	75	79
	5½	21 ½	24	25 ½	28 ½	31½	34 ½	37	39 ½	43 ½	47 ½	54½	61	66	69 ½	74	78 ½	83
	6	22	25	26½	30	33	36	38½	41	45½	50	57	63½	69	72 ¹ ⁄2	77½	82	86½

67

ĥ

BEAM DIMENSIONS



			1									
Amerio	can Stand	ARD CHA	ANNELS									
Y (Depth of Section) Z (Mean Thickness of Flange) Z												
Y in	Wt./Ft. Ib	Width in	Z in									
	4.1	13%										
3	5.0	1 ½	0.250									
	6.0	1%										
4	5.4	15%	0.010									
4	7.25	1 ³ ⁄4	0.313									
5	6.7	1 ³ ⁄4	0.313									
5	9.0	11 %	0.010									
	8.2	1 ⁷ /8										
6	10.5	2	0.375									
	13.0	2 1⁄8										
	9.8	21/8										
7	12.15	2 ¹ ⁄ ₄	0.375									
	14.75	2¾										
	11.5	2 ¹ ⁄4										
8	13.75	2 ¹ ⁄4	0.375									
	18.75	2 ¹ / ₂										
	13.4	2¾										
9	15.0	2 ¹ / ₂	0.438									
	20.0	25/8										
	15.3	25⁄8										
10	20.0	2 ¾	0.438									
	25.0	2 ⁷ /8										
	30.0	3										
	20.7	3	0.500									
12	25.0	3										
	30.0	31⁄8										
	33.9	3¾										
15	40.0	3 ½	0.625									
	50.0	3¾										
	42.7	4										
18	45.8	4	0.625									
-	51.9	4 ¹ / ₈										
	58.0	4¼										

S Shapes											
Y (Depth of Section) Z (Mean Thickness of Flange) $\frac{1}{f}$											
Y	Wt./Ft.	Width	Z								
in	lb	in	in								
3	5.7	23/8	0.250								
	7.5	2 ¹ /2									
4	7.7	2 ⁵ /8	0.313								
	9.5	2 ³ /4									
5	10.0	3	0.313								
	14.75	3 ¹ /4									
6	12.5	3 ³ /8	0.375								
	12.25	35/8									
7	15.3	35⁄8	0.375								
	20.0	31/8									
8	18.4	4	0.438								
-	23.0	41⁄8									
10	25.4	45⁄8	0.500								
	35.0	5	0.000								
	31.8	5	0.563								
12	35.0	51⁄%	0.000								
12	40.8	5¼	0.688								
	50.0	5½	0.000								
15	42.9	5½	0.625								
	50.0	55⁄8	0.025								
18	54.7	6	0.688								
10	70.0	6¼	0.000								
20	66.0	6¼	0.813								
20	75.5	6¾	0.013								
20.3	86.0	7	0.938								
20.0	96.0	7¼	0.950								
	80.0	7									
24	90.0	71⁄8	0.875								
	100.0	7¼									

	W Shapes												
			1										
		Y	(Depth of S	Secti	on)								
					, II †								
		Z (N	lean Thickr	ness	of Flange)								
				1									
Y	Wt./Ft.	Width	Z		Y	Wt./Ft.	Width	Z					
in 5	10.0	in 5	in		in	lb 36.0	in 7	in					
6	19.0 25.0	5 6 ¹ /8	0.430 0.455			40.0	7	0.430 0.505					
0	18.0	5 ¹ /4	0.330			45.0	7	0.565					
	21.0	5¼	0.400			50.0	71⁄8	0.630					
	24.0	6½	0.400		16	57.0	71⁄8	0.715					
	28.0	6½	0.465			67.0	10¼	0.665					
8	31.0	8	0.435			77.0	101/4	0.760					
	35.0	8 01/	0.495			89.0	10 ³ / ₈	0.875					
	40.0 48.0	8 ¹ / ₈ 8 ¹ / ₈	0.560 0.685			100.0 50.0	10¾ 7½	0.985 0.570					
	58.0	8 ¹ /4	0.810			55.0	7½	0.630					
	67.0	8 ¹ / ₄	0.935			60.0	7 ¹ /2	0.695					
	22.0	5¾	0.360			65.0	75%	0.750					
	26.0	5¾	0.440		18	71.0	75⁄8	0.810					
	30.0	5 ¾	0.510			76.0	11	0.680					
	33.0	8	0.435			86.0	111/8	0.770					
10	39.0	8	0.530			97.0	11 ¹ / ₈	0.870					
10	45.0	8 10	0.620			106.0	11 ¹ ⁄ ₄	0.940					
	49.0 54.0	10	0.560 0.615			62.0 68.0	8 ¹ /4 8 ¹ /4	0.615 0.685					
	60.0	10 ¹ / ₈	0.680			73.0	8 ¹ /4	0.740					
	68.0	101/%	0.770		21	83.0	8 ³ /8	0.835					
	77.0	10¼	0.870			93.0	8 ³ / ₈	0.930					
	88.0	10¼	0.990			101.0	12 ¼	0.800					
	26.0	6½	0.380			111.0	12¾	0.875					
	30.0	6 ¹ /2	0.440			122.0	12¾	0.960					
	35.0	6½	0.520			76.0	9	0.680					
	40.0 45.0	8 8	0.515 0.575		24	84.0 94.0	9 9 ¹ ⁄8	0.770 0.875					
	50.0	8 ¹ /8	0.640		24	104.0	12 ³ /4	0.750					
	53.0	10	0.575			117.0	12 ³ /4	0.850					
12	58.0	10	0.640			131.0	12 ⁷ /8	0.960					
	65.0	12	0.605			94.0	10	0.745					
	72.0	12	0.670		27	102.0	10	0.830					
	79.0	12 ¹ / ₈	0.735			114.0	101/%	0.930					
	87.0	12 ¹ /8 12 ¹ /8	0.810			146.0	14	0.975					
	96.0 106.0	1278 12 ¹ /4	0.900 0.990			108.0 116.0	10½ 10½	0.760 0.850					
	30.0	6 ³ /4	0.385		30	124.0	10 ¹ /2	0.930					
	34.0	6 ³ /4	0.455			132.0	101/2	1.000					
	38.0	6 ³ ⁄4	0.515			118.0	11 ½	0.740					
	43.0	8	0.530		33	130.0	11 ½	0.855					
	48.0	8	0.595			141.0	11½	0.960					
	53.0	8	0.660			135.0	12	0.790					
4.4	61.0	10	0.645		36	150.0	12	0.940					
14	68.0 74.0	10 10 ¹ /8	0.720 0.785			160.0	12	1.020					
	82.0	1078 10 ¹ /8	0.785	'									
	90.0	14 ¹ /2	0.710										
	99.0	145/8	0.780										
	109.0	14%	0.860										
	120.0	145%	0.940										
	132.0	1 4¾	1.030										

Ĥ

	TEMPERATURE CONVERSIONS To convert C° to F°, find C° value in the middle column and read F° in right hand column. To convert F° to C°, find F° value in the middle column and read C° in left hand column.																					
F to C	Input	C to F	F to C	Input	C to F	F to C	Input	C to F	F to C	Input	C to F	Г	F to C	Input	C to F	F	to C	Input	C to F	F to C	Input	C to F
-273 -268 -262 -257	-459.4 -450 -440 -430	- - -	-8.3 -7.8 -7.2 -6.7	17 18 19 20	62.6 64.4 66.2 68.0	27.2 27.8 28.3 28.9	81 82 83 84	177.8 179.6 181.4 183.2	282 288 293 299	540 550 560 570	1,004 1,022 1,040 1,058		638 643 649 654	1,180 1,190 1,200 1,210	2,156 2,174 2,192 2,210	1	993 999 ,004	1,820 1,830 1,840 1,850	3,308 3,326 3,344 3,362	1,349 1,354 1,360 1,366	2,460 2,470 2,480 2,490	4,460 4,478 4,496 4,514
-251 -246 -240 -234	-420 -410 -400 -390	- - -	-6.1 -5.6 -5.0 -4.4	21 22 23 24	69.8 71.6 73.4 75.2	29.4 30.0 30.6 31.1	85 86 87 88	185.0 186.8 188.6 190.4	304 310 316 321	580 590 600 610	1,076 1,094 1,112 1,130	-	660 666 671 677	1,220 1,230 1,240 1,250	2,228 2,246 2,264 2,282	1	,021 ,027	1,860 1,870 1,880 1,890	3,380 3,398 3,416 3,434	1,371 1,377 1,382 1,388	2,500 2,510 2,520 2,530	4,532 4,550 4,568 4,586
-229 -223 -218 -212	-380 -370 -360 -350	- - - -	-3.9 -3.3 -2.8 -2.2	25 26 27 28	77.0 78.8 80.6 82.4	31.7 32.2 32.8 33.3	89 90 91 92	192.2 194.0 195.8 197.6	327 332 338 343	620 630 640 650	1,148 1,166 1,184 1,202	-	682 688 693 699	1,260 1,270 1,280 1,290	2,300 2,318 2,336 2,354	1 1 1	,038 ,043 ,049	1,900 1,910 1,920 1,930	3,452 3,470 3,488 3,506	1,393 1,399 1,404 1,410	2,540 2,550 2,560 2,570	4,604 4,622 4,640 4,658
-207 -201 -196 -190	-340 -330 -320 -310	- - -	-1.7 -1.1 -0.6 0.0	29 30 31 32	84.2 86.0 87.8 89.6	33.9 34.4 35.0 35.6	93 94 95 96	199.4 201.2 203.0 204.8	349 354 360 366	660 670 680 690	1,220 1,238 1,256 1,274	-	704 710 716 721	1,300 1,310 1,320 1,330	2,372 2,390 2,408 2,426	1 1 1	,060 ,066 ,071	1,940 1,950 1,960 1,970	3,524 3,542 3,560 3,578	1,416 1,421 1,427 1,432	2,580 2,590 2,600 2,610	4,676 4,694 4,712 4,730
-184 -179 -173 -169	-300 -290 -280 -273	- - - 459.4	0.6 1.1 1.7 2.2	33 34 35 36	91.4 93.2 95.0 96.8	36.1 36.7 37.2 37.8	97 98 99 100	206.6 208.4 210.2 212.0	371 377 382 388	700 710 720 730	1,292 1,310 1,328 1,346		727 732 738 743	1,340 1,350 1,360 1,370	2,444 2,462 2,480 2,498	1	,088 ,093	1,980 1,990 2,000 2,010	3,596 3,614 3,632 3,650	1,438 1,443 1,449 1,454	2,620 2,630 2,640 2,650	4,748 4,766 4,784 4,802
-168 -162 -157 -151	-270 -260 -250 -240	-454.0 -436.0 -418.0 -400.0	2.8 3.3 3.9 4.4	37 38 39 40	98.6 100.4 102.2 104.0	43.3 48.9 54.4 60.0	110 120 130 140	230.0 248.0 266.0 284.0	393 399 404 410	740 750 760 770	1,364 1,382 1,400 1,418		749 754 760 766	1,380 1,390 1,400 1,410	2,516 2,534 2,552 2,570	1	,110 ,116	2,020 2,030 2,040 2,050	3,668 3,686 3,704 3,722	1,460 1,466 1,471 1,477	2,660 2,670 2,680 2,690	4,820 4,838 4,856 4,874
-146 -140 -134 -129	-230 -220 -210 -200	-382.0 -364.0 -346.0 -328.0	5.0 5.6 6.1 6.7	41 42 43 44	105.8 107.6 109.4 111.2	65.6 71.1 76.7 82.2	150 160 170 180	302.0 320.0 338.0 356.0	416 421 427 432	780 790 800 810	1,436 1,454 1,472 1,490		771 777 782 788	1,420 1,430 1,440 1,450	2,588 2,606 2,624 2,642	1	,132 ,138	2,060 2,070 2,080 2,090	3,740 3,758 3,776 3,794	1,482 1,488 1,493 1,499	2,700 2,710 2,720 2,730	4,892 4,910 4,928 4,946
-123 -118 -112 -107	-190 -180 -170 -160	-310.0 -292.0 -274.0 -256.0	7.2 7.8 8.3 8.9	45 46 47 48	113.0 114.8 116.6 118.4	87.8 93.3 98.9 100	190 200 210 212	374.0 392.0 410.0 413.6	438 443 449 454	820 830 840 850	1,508 1,526 1,544 1,562		793 799 804 810	1,460 1,470 1,480 1,490	2,660 2,678 2,696 2,714	1	,154 ,160	2,100 2,110 2,120 2,130	3,812 3,830 3,848 3,866	1,504 1,510 1,516 1,521	2,740 2,750 2,760 2,770	4,964 4,982 5,000 5,018
-101 -96 -90 -84	-150 -140 -130 -120	-238.0 -220.0 -202.0 -184.0	9.4 10.0 10.6 11.1	49 50 51 52	120.2 122.0 123.8 125.6	104 110 116 121	220 230 240 250	428.0 446.0 464.0 482.0	460 466 471 477	860 870 880 890	1,580 1,598 1,616 1,634		816 821 827 832	1,500 1,510 1,520 1,530	2,732 2,750 2,768 2,786	1	,177 ,182	2,140 2,150 2,160 2,170	3,884 3,902 3,920 3,938	1,527 1,532 1,538 1,543	2,780 2,790 2,800 2,810	5,036 5,054 5,072 5,090
-79 -73 -68 -62	-110 -100 -90 -80	-166.0 -148.0 -130.0 -112.0	11.7 12.2 12.8 13.3	53 54 55 56	127.4 129.2 131.0 132.8	127 132 138 143	260 270 280 290	500.0 518.0 536.0 554.0	482 488 493 499	900 910 920 930	1,652 1,670 1,688 1,706		838 843 849 854	1,540 1,550 1,560 1,570	2,804 2,822 2,840 2,858	1	,199 ,204	2,180 2,190 2,200 2,210	3,956 3,974 3,992 4,010	1,549 1,554 1,560 1,566	2,820 2,830 2,840 2,850	5,108 5,126 5,144 5,162
-57 -51 -46 -40	-70 -60 -50 -40	-94.0 -76.0 -58.0 -40.0	13.9 14.4 15.0 15.6	57 58 59 60	134.6 136.4 138.2 140.0	149 154 160 166	300 310 320 330	572.0 590.0 608.0 626.0	504 510 516 521	940 950 960 970	1,724 1,742 1,760 1,778		860 866 871 877	1,580 1,590 1,600 1,610	2,912	1		2,240	4,028 4,046 4,064 4,082	1,582	2,860 2,870 2,880 2,890	5,216
-34 -29 -23 -17.8	-30 -20 -10 0	-22.0 -4.0 14.0 32.0	16.1 16.7 17.2 17.8	61 62 63 64	141.8 143.6 145.4 147.2	171 177 182 188	340 350 360 370	644.0 662.0 680.0 698.0	527 532 538 543		1,796 1,814 1,832 1,850		882 888 893 899	1,620 1,630 1,640 1,650		1	,238 ,243 ,249 ,254	2,270 2,280	4,100 4,118 4,136 4,154	1,604	2,900 2,910 2,920 2,930	5,288
-17.2 -16.7 -16.1 -15.6	1 2 3 4	33.8 35.6 37.4 39.2	18.3 18.9 19.4 20.0	65 66 67 68	149.0 150.8 152.6 154.4	193 199 204 210	380 390 400 410	716.0 734.0 752.0 770.0	549 554 560 566	1,030 1,040	1,868 1,886 1,904 1,922		904 910 916 921	1,660 1,670 1,680 1,690	3,020 3,038 3,056 3,074	1	,260 ,266 ,271 ,277	2,310 2,320	4,172 4,190 4,208 4,226	1,621 1,627	2,940 2,950 2,960 2,970	5,342 5,360
-15.0 -14.4 -13.9 -13.3	5 6 7 8	41.0 42.8 44.6 46.4	20.6 21.1 21.7 22.2	69 70 71 72	156.2 158.0 159.8 161.6	216 221 227 232	420 430 440 450	788.0 806.0 824.0 842.0	571 577 582 588	1,070 1,080	1,940 1,958 1,976 1,994		927 932 938 943	1,700 1,710 1,720 1,730	3,128	1	,282 ,288 ,293 ,299	2,350 2,360	4,244 4,262 4,280 4,298	1,643	2,980 2,990 3,000	
-12.8 -12.2 -11.7 -11.1	9 10 11 12	48.2 50.0 51.8 53.6	22.8 23.3 23.9 24.4	73 74 75 76	163.4 165.2 167.0 168.8	238 243 249 254	460 470 480 490	860.0 878.0 896.0 914.0	593 599 604 610	1,110 1,120	2,012 2,030 2,048 2,066		949 954 960 966	1,740 1,750 1,760 1,770	3,164 3,182 3,200 3,218	1	,304 ,310 ,316 ,321	2,390 2,400	4,316 4,334 4,352 4,370			
-10.6 -10.0 -9.4 -8.9	13 14 15 16	55.4 57.2 59.0 60.8	25.0 25.6 26.1 26.7	77 78 79 80	170.6 172.4 174.2 176.0	260 266 271 277	500 510 520 530	932.0 950.0 968.0 986.0	616 621 627 632	1,150 1,160	2,084 2,102 2,120 2,138		971 977 982 988	1,780 1,790 1,800 1,810		1	,327 ,332 ,338 ,343	2,430 2,440	4,388 4,406 4,424 4,442			

Pressure Conversions														
Т	o convert PS	l to Fee	t of Water, find	PSI	value in the	e middle	column and r	ead	Feet of Wat	er in righ	it hand colur	nn.		
-	To convert Feet of Water to PSI, find Feet of Water value in the middle column and read PSI in left hand column.													
Feet of Water		F	eet of Water			F	eet of Water			F	eet of Water	ſ		
Head	PSI		Head		PSI		Head		PSI		Head		PSI	
2.31	28.14	65	150.15		55.84	129	297.99		83.55	193	445.83		111.26	257
4 00	00.57	~~	100 40		FC 00	400	000.00		00.00	101	440 44		111 00	050

PSI	Feet of Water Head	Feet of Water PSI Head		Feet of Water Head	PSI	Feet of Water Head	PSI	Feet of Water Head
0.43 0.87	1 2.31 2 4.62	28.14 65 150.15 28.57 66 152.46	28.14 65 150.15 55.8 28.57 66 152.46 56.2	4 129 297.99 8 130 300.30	83.55 83.98	193 445.83 194 448.14	111.26 25 111.69 25	7 593.67 8 595.98
1.30 1.73	3 6.93 4 9.24	29.00 67 154.77 29.44 68 157.08	29.44 68 157.08 57.1	4 132 304.92	84.42 84.85	195 450.45 196 452.76	112.12 25 112.55 26	0 600.60
2.16 2.60 3.03 3.46	5 11.55 6 13.86 7 16.17 8 18.48	29.87 69 159.39 30.30 70 161.70 30.74 71 164.01 31.17 72 166.32	30.30 70 161.70 58.0 30.74 71 164.01 58.4	1 134 309.54 4 135 311.85	85.28 85.71 86.15 86.58	197455.07198457.38199459.69200462.00	112.99 26 113.42 26 113.85 26 114.29 26	2 605.22 3 607.53
3.90 4.33 4.76 5.19	9 20.79 10 23.10 11 25.41 12 27.72	31.60 73 168.63 32.03 74 170.94 32.47 75 173.25 32.90 76 175.56	32.03 74 170.94 59.7 32.47 75 173.25 60.1	4 138 318.78 7 139 321.09	87.01 87.45 87.88 88.31	201464.31202466.62203468.93204471.24	114.72 26 116.88 27 119.05 27 121.21 28	0 623.70 5 635.25
5.63 6.06 6.49 6.93	13 30.03 14 32.34 15 34.65 16 36.96	33.33 77 177.87 33.77 78 180.18 34.20 79 182.49 34.63 80 184.80	33.77 78 180.18 61.4 34.20 79 182.49 61.9	7 142 328.02 0 143 330.33	88.74 89.18 89.61 90.04	205473.55206475.86207478.17208480.48	123.38 28 125.54 29 127.71 29 129.87 30	0 669.90 5 681.45
7.36 7.79 8.23 8.66	17 39.27 18 41.58 19 43.89 20 46.20	35.06 81 187.11 35.50 82 189.42 35.93 83 191.73 36.36 84 194.04	35.50 82 189.42 63.2 35.93 83 191.73 63.6	0 146 337.26 4 147 339.57	90.48 90.91 91.34 91.77	209482.79210485.10211487.41212489.72	132.03 30 134.20 31 136.36 31 138.53 32	0 716.10 5 727.65
9.09 9.52 9.96 10.39	21 48.51 22 50.82 23 53.13 24 55.44	36.80 85 196.35 37.23 86 198.66 37.66 87 200.97 38.10 88 203.28	37.23 86 198.66 64.9 37.66 87 200.97 65.3	4 150 346.50 7 151 348.81	92.21 92.64 93.07 93.51	213492.03214494.34215496.65216498.96	140.69 32 142.86 33 145.02 33 147.19 34	0 762.30 5 773.85
10.82 11.26 11.69 12.12	25 57.75 26 60.06 27 62.37 28 64.68	38.53 89 205.59 38.96 90 207.90 39.39 91 210.21 39.83 92 212.52	38.96 90 207.90 66.6 39.39 91 210.21 67.1	7 154 355.74 0 155 358.05	93.94 94.37 94.81 95.24	217501.27218503.58219505.89220508.20	149.35 34 151.52 35 153.68 35 155.84 36	0 808.50 5 820.05
12.55 12.99 13.42 13.85	29 66.99 30 69.30 31 71.61 32 73.92	40.26 93 214.83 40.69 94 217.14 41.13 95 219.45 41.56 96 221.76	40.69 94 217.14 68.4 41.13 95 219.45 68.8	0 158 364.98 3 159 367.29	95.67 96.10 96.54 96.97	221 510.51 222 512.82 223 515.13 224 517.44	158.01 36 160.17 37 162.34 37 164.50 38	0 854.70 5 866.25
14.29 14.72 15.15 15.58	33 76.23 34 78.54 35 80.85 36 83.16	41.9997224.0742.4298226.3842.8699228.6943.29100231.00	42.42 98 226.38 70.1 42.86 99 228.69 70.5	3 162 374.22 6 163 376.53	97.40 97.84 98.27 98.70	225519.75226522.06227524.37228526.68	166.67 38 168.83 39 171.00 39 173.16 40	0 900.90 5 912.45
16.02 16.45 16.88 17.32	37 85.47 38 87.78 39 90.09 40 92.40	43.72 101 233.31 44.16 102 235.62 44.59 103 237.93 45.02 104 240.24	44.16 102 235.62 71.8 44.59 103 237.93 72.2	6 166 383.46 9 167 385.77	99.13 99.57 100.00 100.43	229528.99230531.30231533.61232535.92	183.9842194.8145205.6347216.4550	0 1,040 5 1,097
17.75 18.18 18.61 19.05	41 94.71 42 97.02 43 99.33 44 101.64	45.45 105 242.55 45.89 106 244.86 46.32 107 247.17 46.75 108 249.48	45.89 106 244.86 73.5 46.32 107 247.17 74.0	9 170 392.70 3 171 395.01	100.87 101.30 101.73 102.16	233538.23234540.54235542.85236545.16	227.27 52 238.10 55 248.92 57 259.74 60	0 1,271 5 1,328
19.48 19.91 20.35 20.78	45103.9546106.2647108.5748110.88	47.19 109 251.79 47.62 110 254.10 48.05 111 256.41 48.48 112 258.72	47.62 110 254.10 75.3 48.05 111 256.41 75.7	2 174 401.94 6 175 404.25	102.60 103.03 103.46 103.90	237547.47238549.78239552.09240554.40	270.56 62 281.39 65 292.21 67 303.03 70	0 1,502 5 1,559
21.21 21.65 22.08 22.51	49 113.19 50 115.50 51 117.81 52 120.12	48.92 113 261.03 49.35 114 263.34 49.78 115 265.65 50.22 116 267.96	49.35 114 263.34 77.0 49.78 115 265.65 77.4	6 178 411.18 9 179 413.49	104.33 104.76 105.19 105.63	241556.71242559.02243561.33244563.64	313.85 72 324.68 75 335.50 77 346.32 80	0 1,733 5 1,790
22.94 23.38 23.81 24.24	53122.4354124.7455127.0556129.36	50.65117270.2751.08118272.5851.52119274.8951.95120277.20	51.08 118 272.58 78.7 51.52 119 274.89 79.2	9 182 420.42 2 183 422.73	106.06 106.49 106.93 107.36	245565.95246568.26247570.57248572.88	357.14 82 367.97 85 378.79 87 389.61 90	0 1,964 5 2,021
24.68 25.11 25.54 25.97	57 131.67 58 133.98 59 136.29 60 138.60	52.38121279.5152.81122281.8253.25123284.1353.68124286.44	52.81 122 281.82 80.5 53.25 123 284.13 80.9	2 186 429.66 5 187 431.97	107.79 108.23 108.66 109.09	249575.19250577.50251579.81252582.12	400.43 92 411.26 95 422.08 97 432.90 100	0 2,195 5 2,252
26.41 26.84 27.27 27.71	61140.9162143.2263145.5364147.84	54.11 125 288.75 54.55 126 291.06 54.98 127 293.37 55.41 128 295.68	54.55 126 291.06 82.2 54.98 127 293.37 82.6	5 190 438.90 8 191 441.21	109.52 109.96 110.39 110.82	253584.43254586.74255589.05256591.36	649.4 150 865.8 200 1,082 250 1,300 300	00 4,620 00 5,780

Ê

	PROPER	ties of W	later at S	aturation P re	SSURE	Decimal	Decimal	Decimal —— Inch
-	Saturation			Convert Facto		Foot — Inch Measurement	Foot — Inch Measurement	Foot — Measurement
remp ∣ °F	Pressure PSI (abs)	Density lb/ft3	Density Ib/gal	ft. of water to PSI	b/sec. ft.	0.001302 - 1/64"	0.042969 33/64"	0.166667 — 2"
32	0.0885	62.42	8.346	2.307	0.001203	0.002604 1/32"	0.044271 17/32"	0.250000 3"
40	0.1217	62.43	8.347	2.307	0.001042	0.003906 - 3/64"	0.045573 35/64"	0.333333 4"
50 60	0.1781 0.2563	62.41 62.37	8.344 8.339	2.307 2.309	0.000880 0.000753	0.005208 1/16"	0.046875 9/16"	0.416667 ——— 5"
70	0.3631	62.30	8.330	2.311	0.000657	0.006510 - 5/64"	0.048177 37/64"	0.500000 6"
80	0.5069	62.22	8.319	2.315	0.000579	0.007813 3/32"	0.049479 19/32"	0.583333 7"
90	0.6982 0.9492	62.12	8.305	2.318	0.000513	0.009115 - 7/64"	0.050781 39/64"	0.666667 — 8"
100		62.00	8.289	2.323	0.000460	0.010417 1/8"	0.052083 5/8"	0.750000 ——— 9"
110 120	1.275 1.692	61.84 61.73	8.268 8.253	2.328 2.333	0.000415 0.000376	0.011719 - 9/64"	0.053385 41/64"	0.833333 10"
130	2.222	61.54	8.228	2.340	0.000343	0.013021 5/32"	0.054688 21/32"	0.916667 11"
140	2.889	61.39	8.208	2.346	0.000316	0.014323 11/64"	0.055990 43/64"	1.000000 12"
150 160	3.718 4.741	61.20 61.01	8.182 8.157	2.353 2.360	0.000290 0.000269	0.015625 3/16"	0.057292 11/16"	
170	5.992	60.79	8.128	2.360	0.000209	0.016927 13/64"	0.058594 45/64"	
180	7.510	60.57	8.098	2.377	0.000233	0.018229 7/32"	0.059896 23/32"	
190	9.339	60.35	8.069	2.386	0.000218	0.019531 15/64"	0.061198 47/64"	
200 210	11.53 14.12	60.13 59.88	8.039 8.006	2.395 2.405	0.000205 0.000193	0.020833 1/4"	0.062500 3/4"	
210	14.696	59.80 59.81	7.997	2.403	0.000193	0.022135 17/64"	0.063802 49/64"	
220	17.19	59.63	7.973	2.415	0.000181	0.023438 9/32"	0.065104 25/32"	
230	20.78	59.38	7.939	2.425	0.000171	0.024740 19/64"	0.066406 51/64"	
240 250	24.97 29.82	59.10 58.82	7.902 7.864	2.436 2.448	0.000163 0.000154	0.026042 5/16"	0.067708 13/16"	
275	45.42	58.09	7.767	2.440	0.000134	0.027344 21/64"	0.069010 53/64"	
300	67.01	57.31	7.662	2.513	0.000130	0.028646 11/32"	0.070313 27/32"	
350	134.6	55.59	7.432	2.591	0.000108	0.029948 23/64"	0.071615 55/64"	
400	247.3	53.65	7.173	2.684	0.0000874	0.031250 3/8"	0.072917 7/8"	
450 500	422.6 680.8	51.55 49.02	6.892 6.554	2.793 2.938	0.0000806 0.0000672	0.032552 25/64"	0.074219 57/64"	
550	1045	45.87	6.133	3.139	0.0000605	0.033854 13/32"	0.075521 29/32"	
600	1543	42.37	5.665	3.399	0.0000538	0.035156 27/64"	0.076823 59/64"	
650	2208	37.31	4.988	3.860	0.0000470	0.036458 — 7/16"	0.078125 15/16"	
700	3094	27.10	3.623	5.314	0.0000269	0.037760 29/64"	0.079427 61/64"	
						0.039063 15/32"	0.080729 31/32"	
						0.040365 31/64"	0.082031 63/64"	

Decimal
Equiv. ———— Fraction
0.015625 — 1/64
0.031250 1/32
0.046875 — 3/64
0.062500 1/16
0.078125 — 5/64
0.093750 ³ / ₃₂
0.109375 — 7/64
0.125000
0.140625 — %4
0.156250 5/32
0.171875 — ¹¹ ⁄ ₆₄
0.187500 3/16
0.203125 — ¹³ ⁄ ₆₄
0.218750 7/32
0.234375 — ¹⁵ ⁄ ₆₄
0.250000 1⁄4

Decimal	Decimal	Decimal
Equiv Fraction	Equiv Fraction	Equiv Fraction
0.265625 — 17/64	0.515625 — ³³ ⁄64	0.765625 — 49/64
0.281250 %32	0.531250 17/32	0.781250 ²⁵ / ₃₂
0.296875 — ¹⁹ ⁄ ₆₄	0.546875 — ³⁵ ⁄ ₆₄	0.796875 — ⁵¹ ⁄ ₆₄
0.312500 5/16	0.562500 %16	0.812500 ¹³ / ₁₆
0.328125 — ²¹ / ₆₄	0.578125 — ³⁷ ⁄ ₆₄	0.828125 — ⁵³ ⁄ ₆₄
0.343750 11/32	0.593750 ¹⁹ /32	0.843750 27/32
$0.359375 - \frac{23}{64}$	0.609375 — ³⁹ ⁄ ₆₄	0.859375 — ⁵⁵ ⁄ ₆₄
0.375000	0.6250005%	0.8750007/8
0.390625 — ²⁵ ⁄ ₆₄	0.640625 — 41/64	0.890625 — ⁵⁷ ⁄ ₆₄
0.406250 ¹³ / ₃₂	0.656250 21/32	0.906250 ²⁹ / ₃₂
0.421875 — ²⁷ ⁄ ₆₄	0.671875 — ⁴³ ⁄ ₆₄	0.921875 — ⁵⁹ ⁄ ₆₄
0.437500 7⁄16	0.687500 11/16	0.937500 ¹⁵ /16
0.453125 — ²⁹ ⁄ ₆₄	0.703125 — 45/64	0.953125 — ⁶¹ ⁄ ₆₄
0.468750 ¹⁵ / ₃₂	0.718750 <u>23</u> /32	0.968750 ³¹ / ₃₂
0.484375 — ³¹ ⁄ ₆₄	0.734375 — 47/64	0.984375 — ⁶³ ⁄ ₆₄
0.500000	0.750000	1.000000 1

0.041667 _____ 1/2" 0.083333 _____ 1"

METRIC CONVERSIONS

Inch	Millimeters					METRIC CO	INVERSION TABL	.E		
0 1/128 1/64 3/128 1/32 5/128 3/64 7/128 1/16	0 0.1984375 0.396875 0.5953125 0.79375 0.9921875 1.190625 1.3890625 1.5875	Example	Using the So now co Using the So now co	feet to met onvert 3.76 inch to mill onvert 108.8	rs to feet, inches er table, 12 ft. = 64m - 3.6576m limeter table, 4½ 8mm - 107.95m limeter table, ½2	Example:	Convert 15 ft. $6\frac{7}{16}$ in. to meters Using the feet to meter table, 15 ft. = 4.572 meters Using the inch to millimeter table, $6\frac{7}{16}$ in. = .1635125 meters Thus, 15 ft. $6\frac{7}{16}$ in. = 4.7355125 meter			
		Inch M	illimeters	Inch	Millimeters	InchM	illimeters	InchN	lillimeters	InchMillimeters
$\begin{array}{c} 1/_{16} \\ 1/_8 \\ 3/_{16} \\ 1/_4 \\ 5/_{16} \\ 3/_8 \\ 7/_{16} \\ 1/_2 \\ 9/_{16} \\ 5/_8 \\ 11/_{16} \\ 3/_4 \\ 13/_{16} \\ 7/_8 \\ 15/_{16} \\ 11/_{17/_8} \\ 15/_{16} \\ 11/_{17/_8} \\ 15/_{16} \\ 11/_4 \\ 15/_{16} \\ 13/_8 \\ 17/_{16} \\ 11/_4 \\ 15/_{16} \\ 13/_8 \\ 17/_{16} \\ 11/_4 \\ 15/_{16} \\ 13/_8 \\ 17/_{16} \\ 11/_4 \\ 15/_{16} \\ 13/_8 \\ 17/_{16} \\ 11/_4 \\ 15/_{16} \\ 13/_{16} \\ 11/_4 \\ 15/_{16} \\ 11/_4 \\ 15/_{16} \\ 11/_{16} \\ 11/_4 \\ 15/_{16} \\ 11/_{16} \\ 1$	$\begin{array}{c} 1.5875\\ 3.175\\ 4.7625\\ 6.35\\ \hline\\ 7.9375\\ 9.525\\ 11.1125\\ 12.7\\ 14.2875\\ 15.875\\ 17.4625\\ 19.05\\ 20.6375\\ 22.225\\ 23.8125\\ 25.4\\ 26.9875\\ 28.575\\ 30.1625\\ 31.75\\ 33.3375\\ 34.925\\ 36.5125\\ 38.1\\ 39.6875\\ 41.275\\ 42.8625\\ 44.45\\ 46.0375\\ 47.625\\ 49.2125\\ \end{array}$	$\begin{array}{c} 2^{1}/_{16} \\ 2^{1}/_{8} \\ 2^{3}/_{6} \\ 2^{3}/_{6} \\ 2^{3}/_{8} \\ 2^{7}/_{16} \\ 2^{3}/_{8} \\ 2^{7}/_{16} \\ 2^{5}/_{8} \\ 2^{11}/_{16} \\ 2^{3}/_{4} \\ 2^{13}/_{16} \\ 2^{7}/_{8} \\ 2^{15}/_{16} \\ 3^{3}/_{16} \\ 3^{1}/_{4} \\ 3^{5}/_{16} \\ 3^{3}/_{4} \\ 3^{5}/_{8} \\ 3^{11}/_{16} \\ 3^{3}/_{4} \\ 3^{13}/_{16} \\ 3^{13}/_{6} \\ 3^{7}/_{8} \\ \end{array}$	Solution 52.3875 53.975 55.5625 57.15 58.7375 60.325 61.9125 63.5 65.0875 66.675 68.2625 69.85 71.4375 73.025 74.6125 76.2 77.7875 80.9625 82.55 84.1375 85.725 87.3125 88.9 90.4875 92.075 93.6625 95.25 96.8375 98.425 100.0125	$\begin{array}{c} 1100\\ 41/16\\ 41/8\\ 43/16\\ 41/4\\ 45/16\\ 43/8\\ 47/16\\ 41/2\\ 49/16\\ 45/8\\ 41/2\\ 49/16\\ 45/8\\ 41/2\\ 49/16\\ 45/8\\ 41/2\\ 49/16\\ 45/8\\ 51/16\\ 5\\ 51/8\\ 51/8\\ 51/8\\ 51/8\\ 51/8\\ 51/8\\ 55/16\\ 51/8\\ 55/16\\ 55/8\\ 51/4\\ 55/16\\ 55/8\\ 51/16\\ 51/16\\ 55/8\\ 51/16\\ $	Willingeters 103.1875 104.775 106.3625 107.95 109.5375 111.125 112.7125 114.3 115.8875 117.475 120.65 122.2375 123.825 125.4125 131.7625 133.35 134.9375 136.525 139.7 141.2875 142.875 144.625 144.05 144.2875 144.2875 144.2875 144.2875 145.25 145.25 145.25 145.25 145.25 145.25 145.25 145.25 145.25 145.25 145.25 145.25 145.25 145.25 145.25 145.25 145.25 145.25 145.25	$\begin{array}{c} \text{Incriting}\\ \textbf{6}'/_{46}\\ \textbf{6}'/_{8}\\ \textbf{6}'/_{16}\\ \textbf{6}'/_{4}\\ \textbf{6}'/_{16}\\ \textbf{6}'/_{4}\\ \textbf{6}'/_{16}\\ \textbf{6}'/_{2}\\ \textbf{6}'/_{16}\\ \textbf{6}'/_{2}\\ \textbf{6}'/_{16}\\ \textbf{6}'/_{2}\\ \textbf{6}'/_{16}\\ \textbf{6}'/_{4}\\ \textbf{6}''_{3}\\ \textbf{6}''_{4}\\ \textbf{6}''_{4}\\ \textbf{6}''_{4}\\ \textbf{6}''_{5}\\ \textbf{6}''_{4}\\ \textbf{7}''_{4}\\ \textbf{7}''_{5}\\ $	153.9875 153.9875 155.575 157.1625 158.75 160.3375 161.925 163.5125 165.1 166.6875 168.275 169.8625 171.45 173.0375 174.625 177.8 179.3875 182.5625 184.15 185.7375 184.25 190.5 192.0875 193.675 196.85 198.4375 200.025 201.6125	Incriv 81/6 81/8 83/16 81/4 85/16 83/8 87/16 81/2 89/16 85/8 81/2 89/16 85/8 81/2 89/16 85/8 81/2 89/16 85/8 811/16 87/8 815/16 9 91/16 91/8 91/16 91/4 95/16	204.7875 206.375 207.9625 209.55 211.1375 212.725 214.3125 215.9 217.4875 219.075 220.6625 222.25 223.8375 225.425 223.01875 231.775 233.3625 234.95 236.5375 238.125 238.125 238.125 238.125 238.125 238.125 239.7125 241.3 242.8875 244.475 244.0625 244.475 244.0625 247.65	Inclumination $10\frac{1}{6}$ 255.5875 $10\frac{1}{6}$ 255.5875 $10\frac{1}{6}$ 257.175 $10\frac{3}{6}$ 258.7625 $10\frac{1}{4}$ 260.35 $10\frac{5}{6}$ 261.9375 $10\frac{3}{6}$ 263.525 $10\frac{7}{6}$ 265.1125 $10\frac{1}{2}$ 266.7 $10\frac{9}{6}$ 268.2875 $10\frac{9}{6}$ 268.2875 $10\frac{9}{6}$ 271.4625 $10\frac{3}{4}$ 273.05 $10\frac{13}{6}$ 274.6375 $10\frac{19}{6}$ 277.8125 11 279.4 $11\frac{1}{6}$ 280.9875 $11\frac{1}{6}$ 284.1625 $11\frac{1}{4}$ 285.75 $11\frac{3}{6}$ 284.1625 $11\frac{1}{4}$ 285.75 $11\frac{3}{6}$ 287.3375 $11\frac{3}{6}$ 293.6875 $11\frac{1}{4}$ 295.275 $11\frac{1}{4}$ 295.275 $11\frac{3}{4}$ 296.8625 $11\frac{3}{4}$ 298.45 $11\frac{13}{4}$ 300.0375 $11\frac{5}{6}$ 303.2125
2	49.2125 50.8		100.0125 101.6	5 ⁻⁷¹⁶	152.4	8	201.0125	10	252.4125 254	12 304.8
East	Motors	East	Motore	East	Motore	East	Motore	East	Motore	
Feet 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Meters 0.3048 0.6096 0.9144 1.2192 1.524 1.8288 2.1336 2.4384 2.7432 3.048 3.3528 3.6576 3.9624 4.2672 4.572 4.8768 5.1816 5.4864 5.7912 6.096	Feet 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	Meters 6.4008 6.7056 7.0104 7.3152 7.62 7.9248 8.2296 8.5344 8.8392 9.144 9.4488 9.7536 10.0584 10.3632 10.668 10.9728 11.2776 11.5824 11.8872 12.192	Feet 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	Meters 12.4968 12.8016 13.1064 13.1064 13.1064 13.1064 13.1064 13.1064 13.1064 13.1064 13.4112 13.716 14.0208 14.3256 14.6304 14.9352 15.24 15.5448 15.8496 16.1544 16.4592 16.764 17.0688 17.3736 17.6784 17.9832 18.288	Feet 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80	Meters 18.5928 18.8976 19.2024 19.5072 19.812 20.1168 20.4216 20.7264 21.0312 21.336 21.6408 21.9456 22.2504 22.5552 22.86 23.1648 23.4696 23.7744 24.0792 24.384	Feet 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100	Meters 24.6888 24.9936 25.2984 25.6032 25.908 26.2128 26.5176 26.8224 27.1272 27.432 27.7368 28.0416 28.3464 28.956 29.2608 29.5656 29.8704 30.1752 30.48	

73

The following formulas are used in the computation of the values shown in the table:

†weight of pipe per foot (pounds) = 10.6802t (D - t) weight of water per foot (pounds) = 0.3405 x d^2 square feet outside surface per foot = $\pi/12 \times D$ squarefeet inside surface perfoot = $\pi/12 \times d$ inside area (square inches) = $\pi/4 \times d2$ area of metal (square inches) = $\pi/4 \times (D2 - d^2)$ moment of inertia (inches4) = $\pi/64 \times (D2 - d^2) = A_m R_g^2$ section modulus (inches3) = $\pi/32 \times (D4 - d^4)/D$ radius of gyration (inches) = $\sqrt{(D^2 - d^2)}/4$

Where:

- A_m = area of metal (square inches)
- *d* = inside diameter (inches)
- D = outside diameter (inches)
- R_g = radius of gyration (inches)

t = pipewall thickness(inches)

Note:

- † The ferritic steels may be about 5% less, and the austenitic stainless steels about 2% greater than the values shown in this table which are based on weights for carbon steel.
- * Schedule Numbers

Standard weight pipe and schedule 40 are the same in all sizes through I0-inch from 12-inch through 24-inch, standard weight pipe has a wall thickness of 3/8-inch.

Extra strong weight pipe and schedule 80 are the same in all sizes through 8-inch; from 8-inch through 24-inch, extra strong weight pipe has a wall thickness of $\frac{1}{2^{\circ}}$.

Double extra strong weight pipe has no corresponding schedule number.

- a: ANSI B36.10 steel pipe schedule numbers
- b: ANSI B36.10 steel pipe nominal wall thickness designation
- c: ANSI B36.19 stainless steel pipe schedule numbers

Nom. Pipe Size,	s	chedu	lle	Wall	Inside	Inside	Metal	Outside	Inside	Weight	Weight of Water	Moment	Section	Radius
0.D.		umbe		Thickness		Area	Area	Surface	Surface	per Foot	per Foot	of Inertia	Modulus	Gyration
Inches	a	b	C	Inch	Inch	Sq. In.	Sq. In.	Sq. Ft./Ft.	Sq. Ft./Ft.	Lbs.†	Lbs.	In. ⁴	In. ³	In.
1/8	_	-	10S	0.049	0.307	0.0740	0.0548	0.106	0.0804	0.186	0.0321	0.00088	0.00437	0.1271
0.4050	40	Std	40S	0.068	0.269	0.0568	0.0720	0.106	0.0704	0.245	0.0246	0.00106	0.00525	0.1215
	80	XS	80S	0.095	0.215	0.0363	0.0925	0.106	0.0563	0.315	0.0157	0.00122	0.00600	0.1146
1⁄4	-	-	10S	0.065	0.410	0.132	0.0970	0.141	0.1073	0.330	0.0572	0.00279	0.0103	0.1695
0.5400	40	Std	40S	0.088	0.364	0.104	0.125	0.141	0.0953	0.425	0.0451	0.00331	0.0123	0.1628
	80	XS	80S	0.119	0.302	0.072	0.157	0.141	0.0791	0.535	0.0311	0.00377	0.0139	0.1547
3/8	-	-	10S	0.065	0.545	0.233	0.125	0.177	0.1427	0.423	0.1011	0.00586	0.0174	0.2169
0.6750	40	Std	40S	0.091	0.493	0.191	0.167	0.177	0.1291	0.568	0.0828	0.00729	0.0216	0.2090
	80	XS	80S	0.126	0.423	0.141	0.217	0.177	0.1107	0.739	0.0609	0.00862	0.0255	0.1991
	-	-	5S	0.065	0.710	0.396	0.158	0.220	0.1859	0.538	0.172	0.01197	0.0285	0.2750
	-	-	10S	0.083	0.674	0.357	0.197	0.220	0.1765	0.671	0.155	0.01431	0.0341	0.2692
1/2	40	Std	40S	0.109	0.622	0.304	0.250	0.220	0.1628	0.851	0.132	0.01709	0.0407	0.2613
0.8400	80	XS	80S	0.147	0.546	0.234	0.320	0.220	0.1429	1.09	0.102	0.02008	0.0478	0.2505
	160	-	-	0.187	0.466	0.171	0.384	0.220	0.1220	1.30	0.074	0.02212	0.0527	0.2402
	-	XXS	-	0.294	0.252	0.050	0.504	0.220	0.0660	1.71	0.022	0.02424	0.0577	0.2192
	-	-	5S	0.065	0.920	0.665	0.201	0.275	0.2409	0.684	0.288	0.02450	0.0467	0.349
	-	-	10S	0.083	0.884	0.614	0.252	0.275	0.2314	0.857	0.266	0.02969	0.0566	0.343
3⁄4	40	Std	40S	0.113	0.824	0.533	0.333	0.275	0.2157	1.13	0.231	0.03704	0.0705	0.334
1.0500	80	XS	80S	0.154	0.742	0.432	0.433	0.275	0.1943	1.47	0.187	0.04479	0.0853	0.321
	160	-	-	0.218	0.614	0.296	0.570	0.275	0.1607	1.94	0.128	0.05269	0.1004	0.304
	-	XXS	-	0.308	0.434	0.148	0.718	0.275	0.1136	2.44	0.064	0.05792	0.1103	0.284
	-	-	5S	0.065	1.185	1.103	0.255	0.344	0.3102	0.868	0.478	0.04999	0.0760	0.443
	-	-	10S	0.109	1.097	0.945	0.413	0.344	0.2872	1.40	0.410	0.07569	0.1151	0.428
1	40	Std	40S	0.133	1.049	0.864	0.494	0.344	0.2746	1.68	0.375	0.08734	0.1328	0.421
1.3150	80	XS	80S	0.179	0.957	0.719	0.639	0.344	0.2505	2.17	0.312	0.10561	0.1606	0.407
	160	-	_	0.250	0.815	0.522	0.836	0.344	0.2134	2.84	0.226	0.12512	0.1903	0.387
	-	XXS	_	0.358	0.599	0.282	1.076	0.344	0.1568	3.66	0.122	0.14046	0.2136	0.361
	-	-	5S	0.065	1.530	1.839	0.326	0.435	0.4006	1.11	0.797	0.10375	0.1250	0.564
	-	-	10S	0.109	1.442	1.633	0.531	0.435	0.3775	1.81	0.708	0.16049	0.1934	0.550
1 ¼	40	Std	40S	0.140	1.380	1.496	0.669	0.435	0.3613	2.27	0.648	0.19471	0.2346	0.540
1.6600	80	XS	80S	0.191	1.278	1.283	0.881	0.435	0.3346	3.00	0.556	0.24179	0.2913	0.524
	160	-	-	0.250	1.160	1.057	1.107	0.435	0.3037	3.76	0.458	0.28386	0.3420	0.506
	-	XXS	_	0.382	0.896	0.631	1.534	0.435	0.2346	5.21	0.273	0.34110	0.4110	0.472

lom. Pipe Size, O.D.	N	chedul umber	*	Wall Thickness		Inside Area	Metal Area	Outside Surface	Inside Surface	Weight per Foot	Weight of Water per Foot	Moment of Inertia	Section Modulus	Radius Gyration
Inches	а	b	C	Inch	Inch	Sq. In.	Sq. In.	Sq. Ft./Ft.	Sq. Ft./Ft.	Lbs.†	Lbs.	In.4	In. ³	In.
	_	-	5S	0.065	1.770	2.461	0.375	0.497	0.4634	1.27	1.067	0.15792	0.1662	0.649
	-	– Std	10S 40S	0.109 0.145	1.682 1.610	2.222 2.036	0.613	0.497 0.497	0.4403 0.4215	2.08 2.72	0.963 0.883	0.24682	0.2598	0.634 0.623
1 1 /0	40													
1 1/2	80	XS	80S	0.200	1.500	1.767	1.068	0.497	0.3927	3.63	0.766	0.39121	0.4118	0.605
1.9000	160	- VVC	-	0.281	1.338	1.406	1.429	0.497	0.3503	4.86	0.610	0.48239	0.5078	0.581
	_	XXS	-	0.400	1.100	0.950	1.885	0.497	0.2880	6.41	0.412	0.56784	0.5977	0.549
	_	-	-	0.525	0.850	0.567	2.268	0.497	0.2225	7.71	0.246	0.61409	0.6464	0.520
	-	-	-	0.650	0.600	0.283	2.553	0.497	0.1571	8.68	0.123	0.63335	0.6667	0.498
	_	-	5S 10S	0.065	2.245	3.958	0.472	0.622	0.5877	1.60	1.716	0.31489	0.2652	0.817
	-	-		0.109	2.157	3.654	0.776	0.622	0.5647	2.64	1.584	0.49919	0.4204	0.802
0	40	Std	40S	0.154	2.067	3.356	1.075	0.622	0.5411	3.65	1.455	0.66575	0.5606	0.787
2	80		80S	0.218	1.939	2.953	1.477	0.622	0.5076	5.02	1.280	0.86792	0.7309	0.766
2.3750	160	-	-	0.343	1.689	2.241	2.190	0.622	0.4422	7.44	0.971	1.16232	0.9788	0.729
	_	XXS	-	0.436	1.503	1.774	2.656	0.622	0.3935	9.03	0.769	1.31130	1.104	0.703
	_	-	-	0.562	1.251	1.229	3.201	0.622	0.3275	10.9	0.533	1.44157	1.214	0.671
	-	-	-	0.687	1.001	0.787	3.643	0.622	0.2621	12.4	0.341	1.51251	1.274	0.644
	_	-	5S	0.083	2.709	5.764	0.728	0.753	0.7092	2.47	2.499	0.71002	0.4939	0.988
	-	-	10S	0.120	2.635	5.453	1.039	0.753	0.6898	3.53	2.364	0.98725	0.6868	0.975
0.4/0	40	Std	40S	0.203	2.469	4.788	1.704	0.753	0.6464	5.79	2.076	1.52955	1.064	0.947
2 1/2 2.8750	80	-	80S	0.276	2.323	4.238	2.254	0.753	0.6082	7.66	1.837	1.92423	1.339	0.924
	160	-	-	0.375	2.125	3.547	2.945	0.753	0.5563	10.0	1.538	2.35274	1.637	0.894
	_	XXS	-	0.552	1.771	2.463	4.028	0.753	0.4636	13.7	1.068	2.87079	1.997	0.844
	_	_	-	0.675	1.525	1.827	4.665	0.753	0.3992	15.9	0.792	3.08819	2.148	0.814
	-	-	-	0.800	1.275	1.277	5.215	0.753	0.3338	17.7	0.554	3.22396	2.243	0.786
	_	-	5S	0.083	3.334	8.730	0.891	0.916	0.8728	3.03	3.785	1.30116	0.7435	1.208
	-	-	10S	0.120	3.260	8.347	1.274	0.916	0.8535	4.33	3.619	1.82196	1.041	1.196
	40	Std	40S	0.216	3.068	7.393	2.228	0.916	0.8032	7.58	3.205	3.01716	1.724	1.164
3	80	XS	80S	0.300	2.900	6.605	3.016	0.916	0.7592	10.3	2.864	3.89432	2.225	1.136
3.5000	160	-	-	0.437	2.626	5.416	4.205	0.916	0.6875	14.3	2.348	5.03192	2.875	1.094
	_	XXS	-	0.600	2.300	4.155	5.466	0.916	0.6021	18.6	1.801	5.99251	3.424	1.047
	_	-	-	0.725	2.050	3.301	6.320	0.916	0.5367	21.5	1.431	6.49924	3.714	1.014
	-	-	-	0.850	1.800	2.545	7.076	0.916	0.4712	24.1	1.103	6.85088	3.915	0.984
0.4/0	_	-	5S	0.083	3.834	11.545	1.021	1.05	1.004	3.47	5.005	1.95972	0.9799	1.385
3 1/2	-	-	10S	0.120	3.760	11.104	1.463	1.05	0.9844	4.97	4.814	2.75519	1.378	1.372
4.0000	40		40S	0.226	3.548	9.887	2.680	1.05	0.9289	9.11	4.286	4.78772	2.394	1.337
	80		80S	0.318	3.364	8.888	3.678	1.05	0.8807	12.5	3.853	6.28009	3.140	1.307
		XXS	-	0.636	2.728	5.845	6.721	1.05	0.7142	22.9	2.534	9.84776	4.924	1.210
	_	-	5S	0.083	4.334	14.753	1.152	1.18	1.135	3.92	6.396	2.80979	1.249	1.562
	_	-	10S	0.120	4.260	14.253	1.651	1.18	1.115	5.61	6.179	3.96268	1.761	1.549
	-	-	-	0.188	4.124	13.358	2.547	1.18	1.080	8.66	5.791	5.93033	2.636	1.526
	40	Std	40S	0.237	4.026	12.730	3.174	1.18	1.054	10.8	5.519	7.23260	3.214	1.510
4	80		80S	0.337	3.826	11.497	4.407	1.18	1.002	15.0	4.984	9.61049	4.271	1.477
4.5000	120	_	-	0.437	3.626	10.326	5.578	1.18	0.9493	19.0	4.477	11.6433	5.175	1.445
	_	-	-	0.500	3.500	9.621	6.283	1.18	0.9163	21.4	4.171	12.7627	5.672	1.425
	160	-	-	0.531	3.438	9.283	6.621	1.18	0.9001	22.5	4.025	13.2710	5.898	1.416
	_	XXS	-	0.674	3.152	7.803	8.101	1.18	0.8252	27.5	3.383	15.2837	6.793	1.374
	_	-	-	0.800	2.900	6.605	9.299	1.18	0.7592	31.6	2.864	16.6570	7.403	1.338
	-	-	-	0.925	2.650	5.515	10.389	1.18	0.6938	35.3	2.391	17.7081	7.870	1.306

a - 40	b _	C	Inch	Diameter	Area	Area	Surface	Surface	per Foot	per Foot	of Inertia	Modulus	Gyration
_	-		Inch	Inch	Sq. In.	Sq. In.	Sq. Ft./Ft.	Sq. Ft./Ft.	Lbs.†	Lbs.	In.4	In. ³	In.
		5S	0.109	5.345	22.438	1.868	1.46	1.399	6.35	9.728	6.94713	2.498	1.929
40		10S	0.134	5.295	22.020	2.285	1.46	1.386	7.77	9.547	8.42536	3.029	1.920
		40S	0.258	5.047	20.006	4.300	1.46	1.321	14.6	8.673	15.1622	5.451	1.878
80	XS	80S	0.375	4.813	18.194	6.112	1.46	1.260	20.8	7.888	20.6707	7.431	1.839
120	-	-	0.500	4.563	16.353	7.953	1.46	1.195	27.0	7.090	25.7317	9.251	1.799
160	_	-	0.625	4.313	14.610	9.696	1.46	1.129	33.0	6.334	30.0259	10.79	1.760
_	XXS	-											1.722
_	-	-											1.686
-	-	-											1.652
_	-						-	1.677				-	2.304
_	_	10S	0.134	6.357	31.739		1.73	1.664	9.29	13.76	14.3974	4.346	2.295
_	_	-	0.129	6.367	31.839	2.633	1.73	1.667	8.95	13.80	13.8918	4.194	2.297
40		40S	0.280	6.065	28.890	5.581		1.588	19.0	12.53	28.1422	8.496	2.245
80	XS	80S	0.432	5.761	26.067	8.405	1.73	1.508	28.6	11.30	40.4907	12.22	2.195
120	-	-	0.562	5.501	23.767	10.705	1.73	1.440	36.4	10.30	49.6106	14.98	2.153
160	-	-	0.718	5.189	21.147	13.324	1.73	1.358	45.3	9.168	58.9732	17.80	2.104
_	XXS	-	0.864	4.897	18.834	15.637	1.73	1.282	53.2	8.165	66.3326	20.02	2.060
_	_	-	1.000	4.625	16.800	17.671	1.73	1.211	60.1	7.284	72.1009	21.77	2.020
_	-	-	1.125	4.375	15.033	19.439	1.73	1.145	66.1	6.517	76.5775	23.12	1.985
_	_	5S	0.109	8.407	55.510	2.916	2.26	2.201	9.91	24.07	26.4402	6.131	3.011
-	-	10S	0.148	8.329	54.485	3.941	2.26	2.181	13.4	23.62	35.4145	8.212	2.998
-	-	-	0.219	8.187	52.643	5.783	2.26	2.143	19.7	22.82	51.1172	11.85	2.973
20	-	-	0.250	8.125	51.849	6.578	2.26	2.127	22.4	22.48	57.7220	13.38	2.962
30	-	-	0.277	8.071	51.162	7.265	2.26	2.113	24.7	22.18	63.3527	14.69	2.953
40	Std	40S	0.322	7.981	50.027	8.399	2.26	2.089	28.6	21.69	72.4892	16.81	2.938
60	-	-	0.406	7.813	47.943	10.483	2.26	2.045	35.6	20.79	88.7363	20.58	2.909
80	XS	80S	0.500	7.625	45.664	12.763	2.26	1.996	43.4	19.80	105.716	24.51	2.878
100	-	-	0.593	7.439	43.463	14.963	2.26	1.948	50.9	18.84	121.324	28.13	2.847
120	-	-	0.718	7.189	40.591	17.836	2.26	1.882	60.6	17.60	140.535	32.59	2.807
140	-	-	0.812	7.001	38.496	19.931	2.26	1.833	67.8	16.69	153.722	35.65	2.777
160	-	-	0.906	6.813	36.456	21.970	2.26	1.784	74.7	15.80	165.887	38.47	2.748
-	-	-	1.000	6.625	34.472	23.955	2.26	1.734	81.4	14.94	177.087	41.06	2.719
_	-	-	1.125	6.375	31.919	26.507	2.26	1.669	90.1	13.84	190.572	44.19	2.681
-	-	5S	0.134	10.482	86.294	4.469	2.81	2.744	15.2	37.41	62.9675	11.71	3.75
-	-	10S	0.165	10.420	85.276	5.487	2.81	2.728	18.7	36.97	76.8638	14.30	3.74
_	_	-	0.219	10.312	83.517	7.245	2.81	2.700	24.6	36.21	100.485	18.69	3.72
20	_	-	0.250	10.250	82.516	8.247	2.81	2.683	28.0	35.77	113.714	21.16	3.71
30	_	_	0.307	10.136	80.691	10.072	2.81	2.654	34.2	34.98	137.420	25.57	3.69
40	Std	40S	0.365	10.020	78.854	11.908	2.81	2.623	40.5	34.19	160.734	29.90	3.67
60	XS	80S	0.500	9.750	74.662	16.101	2.81	2.553	54.7	32.37	211.950	39.43	3.63
80	_	-	0.593	9.564	71.840	18.922	2.81	2.504	64.3	31.15	244.844	45.55	3.60
100	_	-	0.718	9.314	68.134	22.629	2.81	2.438	76.9	29.54	286.132	53.23	3.56
120	_	_	0.843	9.064	64.525	26.237	2.81	2.373	89.2	27.97	324.225	60.32	3.52
_	_	_	0.875	9.000	63.617	27.145	2.81	2.356	92.3	27.58	333.485	62.04	3.51
140	_	_	1.000	8.750	60.132	30.631	2.81	2.291	104	26.07	367.806	-	3.47
160	_	_		8.500	56.745	34.018	2.81		116		399.308	74.29	3.43
_	_	_		-	-	-	-	2.160	127	-		79.66	3.39
_	_	_								-			3.31
	- - - - - - - - - - - - - - - - - - -	Image - - - - - 40 Std 80 120 - 40 Std 80 120 - XXS - - XXS - - 20 - 20 - 30 40 Std 60 7 120 - 120 - 120 - 20 - 20 - 20 - 20 - 20 - 30 - 30 - 30 -	- - - - - - - - - - 40 Std 120 - - XXS 160 - - XXS - - 20 - 20 - 30 - 40 Std 30 - 40 Std 50 - 120 - 120 - 120 - 140 - 120 - 20 - 30 - 20 - 30 - 20 - 30 -	- - 0.875 - - 1.000 - 5S 0.109 - 10S 0.134 - - 0.129 40 Std 40S 0.280 80 XS 80S 0.432 120 - - 0.562 160 - - 0.718 - XXS - 0.864 - - 0.718 - XXS - 0.864 - - 1.125 - - 1.100 - - 0.219 20 - - 0.219 20 - 0.227 40 Std 40S 0.322 60 - - 0.406 80 XS 80S 0.500 100 - - 0.718 140 - 0.812 160 <	- - 0.875 3.813 - - 1.000 3.563 - - 5S 0.109 6.407 - 10S 0.134 6.357 - - 0.129 6.367 40 Std 40S 0.280 6.065 80 XS 80S 0.432 5.761 120 - - 0.562 5.501 160 - - 0.718 5.189 - XXS - 0.864 4.897 - - 1.000 4.625 - - 1.125 4.375 - - 0.219 8.187 20 - 0.2219 8.125 30 - - 0.219 8.125 30 - 0.219 8.125 30 - 0.277 8.071 40 Std 40S 0.322 7.981	- - 0.875 3.813 11.419 - - 1.000 3.563 9.971 - - 5S 0.109 6.407 32.240 - - 10S 0.134 6.357 31.739 - - 0.129 6.367 31.839 40 Std 40S 0.280 6.065 28.890 80 XS 80S 0.432 5.761 26.067 120 - - 0.562 5.501 23.767 160 - - 0.718 5.189 21.147 - XXS - 0.864 4.897 18.834 - - 1.125 4.375 15.033 - - 5S 0.109 8.407 55.510 - - 0.219 8.187 52.643 20 - - 0.227 8.071 51.162 40 Std 40S	- - 0.875 3.813 11.419 12.887 - - 1.000 3.563 9.971 14.335 - - 5S 0.109 6.407 32.240 2.231 - - 10S 0.134 6.357 31.739 2.733 - - 0.129 6.367 31.839 2.633 40 Std 40S 0.280 6.065 28.90 5.581 120 - - 0.562 5.501 23.767 10.705 160 - - 0.718 5.189 21.147 13.324 - XXS - 0.864 4.897 18.834 15.637 - XXS - 0.864 4.897 18.834 15.637 - XXS - 0.864 4.897 18.834 15.637 - - 1.050 8.407 55.10 2.916 - - 0.219	- - 0.875 3.813 11.419 12.887 1.46 - - 1.000 3.563 9.971 14.335 1.46 - - 5S 0.109 6.407 32.240 2.231 1.73 - - 0.129 6.367 31.839 2.633 1.73 - - 0.129 6.367 31.839 2.633 1.73 40 Std 40S 0.280 6.065 28.890 5.581 1.73 120 - - 0.562 5.501 23.767 10.705 1.73 160 - 0.718 5.189 21.147 13.324 1.73 - XXS - 0.864 4.897 18.834 15.637 1.73 - - 1.100 4.625 16.800 17.671 1.73 - - 0.148 8.329 54.485 3.941 2.26 - -	- - 0.875 3.813 11.419 12.887 1.46 0.9982 - - 5 0.109 6.407 32.240 2.231 1.73 1.677 - - 55 0.109 6.407 32.240 2.231 1.73 1.664 - - 0.129 6.367 31.839 2.633 1.73 1.667 40 Std<405	- - - 0.875 3.813 11.419 12.887 1.46 0.9982 43.8 - - - 1.000 3.563 9.971 14.335 1.46 0.9328 48.7 - - 5S 0.109 6.407 32.240 2.231 1.73 1.667 8.95 - - 0.129 6.367 31.839 2.633 1.73 1.588 19.0 0 X5 805 0.432 5.761 26.067 8.405 1.73 1.588 19.0 0 5.80 0.432 5.761 26.067 8.405 1.73 1.440 36.4 100 - - 0.562 5.501 23.767 10.705 1.73 1.440 36.4 - N 0.684 4.897 18.834 15.637 1.73 1.282 53.2 - - 0.562 6.501 2.266 2.261 2.261 2.261 2.	- - 0.875 3.813 11.419 12.887 1.46 0.9982 43.8 4.951 - - 1.000 3.563 9.971 14.335 1.46 0.9328 48.7 4.323 - - 55 0.109 6.407 32.240 2.231 1.73 1.667 9.29 13.76 - - 0.129 6.367 31.399 2.733 1.73 1.664 9.29 13.76 - - 0.129 6.367 31.839 2.631 1.73 1.568 19.0 12.53 80 X5 805 0.432 5.761 26.067 8.405 1.73 1.588 15.30 11.01 1.01 1.358 45.3 11.80 120 - - 0.718 5.189 21.47 13.34 1.368 45.3 11.83 1.53 1.43 36.26 1.73 1.224 32.4 1.67 - - 1.125	- - 0.875 3.813 11.419 12.887 1.46 0.9982 4.38 4.951 366355 - - 0.000 3.663 9.971 14.335 1.46 0.9328 4.8.7 4.323 39.1007 - - 555 0.134 6.367 31.739 2.733 1.737 1.664 9.29 13.78 1.434 0 - 0.129 6.367 31.839 2.633 1.73 1.664 9.29 13.89 2.8.17 0 12 - - 0.129 6.367 31.839 2.6.33 1.73 1.664 9.29 1.35 28.142 0 Stb 0.276 1.705 1.73 1.440 36.4 10.30 49.6106 100 - 0.562 5.501 2.176 1.733 1.282 5.23 8.165 6.372 2 - 0.718 8.495 1.331 1.439 1.33 4.33 9.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

6

76

Nom. Pipe Size, O.D.		:hedu umbei		Wall Thickness	Inside Diameter	Inside Area	Metal Area	Outside Surface	Inside Surface	Weight per Foot	Weight of Water per Foot	Moment of Inertia	Section Modulus	Radius Gyration
Inches	а	b	C	Inch	Inch	Sq. In.	Sq. In.	Sq. Ft./Ft.	Sq. Ft./Ft.	Lbs.†	Lbs.	ln.⁴	In. ³	Ín.
	-	-	5S	0.156	12.438	121.504	6.172	3.34	3.256	21.0	52.68	122.389	19.20	4.45
	-	_	10S	0.180	12.390	120.568	7.108	3.34	3.244	24.2	52.27	140.419	22.03	4.44
	20	_	_	0.250	12.250	117.859	9.817	3.34	3.207	33.4	51.10	191.824	30.09	4.42
	30	_	-	0.330	12.090	114.800	12.876	3.34	3.165	43.8	49.77	248.453	38.97	4.39
	_	Std	40S	0.375	12.000	113.097	14.579	3.34	3.142	49.6	49.03	279.335	43.82	4.38
	40	_	-	0.406	11.938	111.932	15.745	3.34	3.125	53.5	48.53	300.209	47.09	4.37
	_	XS	80S	0.500	11.750	108.434	19.242	3.34	3.076	65.4	47.01	361.544	56.71	4.33
12	60	_	-	0.562	11.626	106.157	21.519	3.34	3.044	73.2	46.02	400.420	62.81	4.31
12.7500	80	_	_	0.687	11.376	101.641	26.035	3.34	2.978	88.5	44.07	475.104	74.53	4.27
	_	_	_	0.750	11.250	99.402	28.274	3.34	2.945	96.1	43.09	510.926	80.15	4.25
	100	_	_	0.843	11.064	96.142	31.534	3.34	2.897	107	41.68	561.650	88.10	4.22
	_	_	_	0.875	11.000	95.033	32.643	3.34	2.880	111	41.20	578.523	90.75	4.21
	120	_	_	1.000	10.750	90.763	36.914	3.34	2.814	125	39.35	641.664	100.7	4.17
	140	_	_	1.125	10.500	86.590	41.086	3.34	2.749	140	37.54	700.551	109.9	4.13
	_	_	_	1.250	10.250	82.516	45.160	3.34	2.683	154	35.77	755.378	118.5	4.09
	160	_	_	1.312	10.126	80.531	47.145	3.34	2.651	160	34.91	781.126	122.5	4.07
	_	_	5S	0.156	13.688	147.153	6.785	3.67	3.584	23.1	63.80	162.564	23.22	4.89
	_	_	10S	0.188	13.624	145.780	8.158	3.67	3.567	27.7	63.20	194.566	27.80	4.88
	_	_	_	0.210	13.580	144.840	9.098	3.67	3.555	30.9	62.79	216.308	30.90	4.88
	_	_	_	0.219	13.562	144.457	9.481	3.67	3.551	32.2	62.63	225.142	32.16	4.87
	10	_	_	0.250	13.500	143.139	10.799	3.67	3.534	36.7	62.06	255.300	36.47	4.86
	_	_	_	0.281	13.438	141.827	12.111	3.67	3.518	41.2	61.49	285.047	40.72	4.85
	20	_	_	0.312	13.376	140.521	13.417	3.67	3.502	45.6	60.92	314.384	44.91	4.84
	_	_	_	0.344	13.312	139.180	14.758	3.67	3.485	50.2	60.34	344.242	49.18	4.83
14	30	Std	_	0.375	13.250	137.886	16.052	3.67	3.469	54.6	59.78	372.760	53.25	4.82
14.0000	40	_	_	0.437	13.126	135.318	18.620	3.67	3.436	63.3	58.67	428.607	61.23	4.80
	_	_	_	0.469	13.062	134.001	19.937	3.67	3.420	67.8	58.09	456.819	65.26	4.79
	_	XS	_	0.500	13.000	132.732	21.206	3.67	3.403	72.1	57.54	483.756	69.11	4.78
	60	-	_	0.593	12.814	128.961	24.977	3.67	3.355	84.9	55.91	562.287	80.33	4.74
	_	_	_	0.625	12.750	127.676	26.262	3.67	3.338	89.3	55.35	588.530	84.08	4.73
	80	_	_	0.750	12.500	122.718	31.220	3.67	3.272	106	53.20	687.318	98.19	4.69
	100	_	_	0.937	12.126	115.485	38.453	3.67	3.175	131	50.07	824.436	117.8	4.63
	120	_	_	1.093	11.814	109.618	44.320	3.67	3.093	151	47.52	929.521	132.8	4.58
	140	_	_	1.250	11.500	103.869	50.069	3.67	3.011	170	45.03	1027.20	146.7	4.53
	160	_	_	1.406	11.188	98.309	55.629	3.67	2.929	189	42.62	1116.65	159.5	4.48
	_	_	5S	0.165	15.670	192.854	8.208	4.19	4.102	27.9	83.61	257.303	32.16	5.60
	_	_	10S	0.188	15.624	191.723	9.339	4.19	4.090	31.7	83.12	291.904	36.49	5.59
	10	_	-	0.250	15.500	188.692	12.370	4.19	4.058	42.1	81.81	383.664	47.96	5.57
	20	_	_	0.312	15.376	185.685	15.377	4.19	4.025	52.3	80.50	473.248	59.16	5.55
	30	Std	_	0.375	15.250	182.654	18.408	4.19	3.992	62.6	79.19	562.084	70.26	5.53
16	40	- -	_	0.500	15.000	176.715	24.347	4.19	3.927	82.8	76.61	731.942	91.49	5.48
16.0000	60	_	_	0.656	14.688	169.440	31.622	4.19	3.845	108	73.46	932.336	116.5	5.43
.0.0000	80	_	_	0.843	14.314	160.921	40.141	4.19	3.747	136	69.77	1156.29	144.5	5.37
	100	_	_	1.031	13.938	152.578	48.484	4.19	3.649	165	66.15	1364.43	170.6	5.30
	120	_	_	1.218	13.564	144.499	56.563	4.19	3.551	192	62.65	1555.41	194.4	5.24
	140	_	_	1.437	13.126	135.318	65.744	4.19	3.436	224	58.67	1759.86	220.0	5.24
	140	_	_	1.437	12.814	128.961	72.101	4.19	3.355	24	55.91	1893.54	220.0	5.17
	100		_	1.080	12.014	120.301	12.101	7.13	0.000	24J	55.51	1090.04	200.7	J.12

Å

Nom. Pipe											Weight			
Size,	-	chedu	-	Wall	Inside	Inside	Metal	Outside	Inside	Weight	of Water	Moment	Section	Radius
0.D. Inches	N a	umbe b	r* C	Thickness Inch	Diameter Inch	Area	Area	Surface Sq. Ft./Ft.	Surface	per Foot Lbs.†	per Foot Lbs.	of Inertia In.4	Modulus In. ³	Gyration In.
IIIGIIGS	a	-	5S	0.165	17.670	Sq. In. 245.224	Sq. In. 9.245	3q . 1. / 1 . 4.71	Sq. Ft./Ft. 4.626	31.4	106.3			6.31
	_	_	55 10S	0.185		243.949	9.245	4.71		35.8	105.8	367.621	40.85 46.36	6.30
	_	_	-		17.624				4.614	47.4	105.8	417.258 549.138		
	-			0.250	17.500	240.528	13.941	4.71	4.581				61.02	6.28
	20	-	-	0.312	17.376	237.132	17.337	4.71	4.549	58.9	102.8	678.244	75.36	6.25
	-	Std	-	0.375	17.250	233.705	20.764	4.71	4.516	70.6	101.3	806.631	89.63	6.23
40	30	-	-	0.437	17.126	230.357	24.112	4.71	4.484	82.0	99.87	930.264	103.4	6.21
18	-	XS	-	0.500	17.000	226.980	27.489	4.71	4.451	93.5	98.40	1053.17	117.0	6.19
18.0000	40	-	-	0.562	16.876	223.681	30.788	4.71	4.418	105	96.97	1171.49	130.2	6.17
	60	-	-	0.750	16.500	213.825	40.644	4.71	4.320	138	92.70	1514.64	168.3	6.10
	80	-	-	0.937	16.126	204.241	50.228	4.71	4.222	171	88.55	1833.47	203.7	6.04
	100	_	-	1.156	15.688	193.297	61.172	4.71	4.107	208	83.80	2179.69	242.2	5.97
	120	_	-	1.375	15.250	182.654	71.815	4.71	3.992	244	79.19	2498.09	277.6	5.90
	140	_	_	1.562	14.876	173.805	80.664	4.71	3.895	274	75.35	2749.11	305.5	5.84
	160	-	-	1.781	14.438	163.721	90.748	4.71	3.780	309	70.98	3019.96	335.6	5.77
	_	_	5S	0.188	19.624	302.458	11.701	5.24	5.138	39.8	131.1	574.172	57.42	7.00
	_	-	10S	0.218	19.564	300.611	13.548	5.24	5.122	46.1	130.3	662.796	66.28	6.99
	10	_	-	0.250	19.500	298.648	15.512	5.24	5.105	52.7	129.5	756.434	75.64	6.98
	20	Std	_	0.375	19.250	291.039	23.120	5.24	5.040	78.6	126.2	1113.47	111.3	6.94
	30	XS	_	0.500	19.000	283.529	30.631	5.24	4.974	104	122.9	1456.86	145.7	6.90
20	40	_	-	0.593	18.814	278.005	36.155	5.24	4.925	123	120.5	1703.71	170.4	6.86
20.0000	60	-	-	0.812	18.376	265.211	48.948	5.24	4.811	166	115.0	2256.74	225.7	6.79
	_	_	-	0.875	18.250	261.587	52.573	5.24	4.778	179	113.4	2408.69	240.9	6.77
	80	_	-	1.031	17.938	252.719	61.440	5.24	4.696	209	109.6	2771.62	277.2	6.72
	100	_	-	1.281	17.438	238.827	75.332	5.24	4.565	256	103.5	3315.02	331.5	6.63
	120	_	-	1.500	17.000	226.980	87.179	5.24	4.451	296	98.40	3754.15	375.4	6.56
	140	-	-	1.750	16.500	213.825	100.335	5.24	4.320	341	92.70	4215.62	421.6	6.48
	160	-	-	1.968	16.064	202.674	111.486	5.24	4.206	379	87.87	4585.21	458.5	6.41
	-	-	SS	0.188	21.624	367.250	12.883	5.76	5.661	43.8	159.2	766.190	69.65	7.71
	-	—	10S	0.218	21.564	365.215	14.918	5.76	5.645	50.7	158.3	884.816	80.44	7.70
	10	-	-	0.250	21.500	363.050	17.082	5.76	5.629	58.1	157.4	1010.26	91.84	7.69
	20	Std	_	0.375	21.250	354.656	25.476	5.76	5.563	86.6	153.8	1489.67	135.4	7.65
	30	XS	_	0.500	21.000	346.361	33.772	5.76	5.498	115	150.2	1952.45	177.5	7.60
22	_	_	-	0.625	20.750	338.163	41.970	5.76	5.432	143	146.6	2399.00	218.1	7.56
22.0000	-	_	_	0.750	20.500	330.064	50.069	5.76	5.367	170	143.1	2829.69	257.2	7.52
	60	-	-	0.875	20.250	322.062	58.070	5.76	5.301	197	139.6	3244.91	295.0	7.48
	80	_	-	1.125	19.750	306.354	73.778	5.76	5.171	251	132.8	4030.43	366.4	7.39
	100	_	_	1.375	19.250	291.039	89.094	5.76	5.040	303	126.2	4758.50	432.6	7.31
	120	_	_	1.625	18.750	276.117	104.016	5.76	4.909	354	119.7	5432.00	493.8	7.23
	140	_	_	1.875	18.250	261.587	118.546	5.76	4.778	403	113.4	6053.72	550.3	7.15
	160	_	_	2.125	17.750	247.450	132.683	5.76	4.647	451	107.3	6626.39	602.4	7.07
									-	-				-

Nom. Pipe Size, O.D.		chedul umber		Wall Thickness	Inside Diameter	Inside Area	Metal Area	Outside Surface	Inside Surface	Weight per Foot	Weight of Water per Foot	Moment of Inertia	Section Modulus	Radius Gyration
Inches	a	b	C	Inch	Inch	Sq. In.	Sq. In.	Sq. Ft./Ft.	Sq. Ft./Ft.	Lbs.†	Lbs.	In.4	In. ³	In.
	10	-	-	0.250	23.500	433.736	18.653	6.28	6.152	63.4	188.0	1315.34	109.6	8.40
	20	Std	-	0.375	23.250	424.557	27.833	6.28	6.087	94.6	184.1	1942.30	161.9	8.35
	-	XS	_	0.500	23.000	415.476	36.914	6.28	6.021	125	180.1	2549.35	212.4	8.31
	30	-	-	0.562	22.876	411.008	41.382	6.28	5.989	141	178.2	2843.20	236.9	8.29
	-	-	-	0.625	22.750	406.493	45.897	6.28	5.956	156	176.2	3136.93	261.4	8.27
	40	-	_	0.687	22.626	402.073	50.316	6.28	5.923	171	174.3	3421.28	285.1	8.25
24	-	-	-	0.750	22.500	397.608	54.782	6.28	5.890	186	172.4	3705.46	308.8	8.22
24.0000	-	-	5S	0.218	23.564	436.102	16.288	6.28	6.169	55.4	189.1	1151.59	95.97	8.41
	-	-	-	0.875	22.250	388.821	63.568	6.28	5.825	216	168.6	4255.34	354.6	8.18
	60	-	-	0.968	22.064	382.348	70.042	6.28	5.776	238	165.8	4652.61	387.7	8.15
	80	-	-	1.218	21.564	365.215	87.174	6.28	5.645	296	158.3	5671.82	472.7	8.07
	100	_	_	1.531	20.938	344.318	108.071	6.28	5.482	367	149.3	6851.69	571.0	7.96
	120	_	_	1.812	20.376	326.083	126.307	6.28	5.334	429	141.4	7824.55	652.0	7.87
	140	_	_	2.062	19.876	310.276	142.114	6.28	5.204	483	134.5	8625.01	718.8	7.79
	160	_	_	2.343	19.314	292.978	159.412	6.28	5.056	542	127.0	9455.42	788.0	7.70
	-	-	_	0.250	25.500	510.705	20.224	6.81	6.676	68.8	221.4	1676.38	129.0	9.10
	10	_	_	0.312	25.376	505.750	25.179	6.81	6.643	85.6	219.3	2077.16	159.8	9.08
	_	Std	_	0.375	25.250	500.740	30.189	6.81	6.610	103	217.1	2478.42	190.6	9.06
26	20	XS	_	0.500	25.000	490.874	40.055	6.81	6.545	136	212.8	3257.00	250.5	9.02
26.0000	_	_	_	0.625	24.750	481.105	49.824	6.81	6.480	169	208.6	4012.56	308.7	8.97
	_	_	_	0.750	24.500	471.435	59.494	6.81	6.414	202	204.4	4745.57	365.0	8.93
	_	_	_	0.875	24.250	461.863	69.066	6.81	6.349	235	200.2	5456.48	419.7	8.89
	_	_	_	1.000	24.000	452.389	78.540	6.81	6.283	267	196.1	6145.74	472.7	8.85
	_	_	_	1.125	23.750	443.014	87.916	6.81	6.218	299	192.1	6813.80	524.1	8.80
	_	-	_	0.250	27.500	593.957	21.795	7.33	7.199	74.1	257.5	2098.09	149.9	9.81
	10	_	_	0.312	27.376	588.613	27.139	7.33	7.167	92.3	255.2	2601.02	185.8	9.79
	_	Std	_	0.375	27.250	583.207	32.545	7.33	7.134	111	252.8	3105.12	221.8	9.77
28	20	XS	_	0.500	27.000	572.555	43.197	7.33	7.069	147	248.2	4084.81	291.8	9.72
28.0000	30	_	_	0.625	26.750	562.001	53.751	7.33	7.003	183	243.6	5037.66	359.8	9.68
	_	_	_	0.750	26.500	551.546	64.206	7.33	6.938	218	239.1	5964.16	426.0	9.64
	_	_	_	0.875	26.250	541.188	74.564	7.33	6.872	253	234.6	6864.82	490.3	9.60
	_	_	_	1.000	26.000	530.929	84.823	7.33	6.807	288	230.2	7740.10	552.9	9.55
	_	_	_	1.125	25.750	520.768	94.984	7.33	6.741	323	225.8	8590.49	613.6	9.51
	-	-	5S	0.250	29.500	683.493	23.366	7.85	7.723	79.4	296.3	2585.18	172.3	10.52
	10	_	10S	0.312	29.376	677.759	29.099	7.85	7.691	98.9	293.8	3206.31	213.8	10.50
	_	Std	_	0.375	29.250	671.957	34.901	7.85	7.658	119	291.3	3829.44	255.3	10.47
	20	XS	_	0.500	29.000	660.520	46.338	7.85	7.592	158	286.4	5042.21	336.1	10.43
30	30	_	_	0.625	28.750	649.181	57.678	7.85	7.527	196	281.4	6224.01	414.9	10.39
30.0000	40	_	_	0.750	28.500	637.940	68.919	7.85	7.461	234	276.6	7375.38	491.7	10.34
	-	-	_	0.875	28.250	626.797	80.062	7.85	7.396	272	271.7	8496.84	566.5	10.30
	-	_	_	1.000	28.000	615.752	91.106	7.85	7.330	310	267.0	9588.93	639.3	10.26
	-	-	_	1.125	27.750	604.806	102.053	7.85	7.265	347	262.2	10652.1	710.1	10.22
	-	-	-	0.250	29.500	683.493	23.366	7.85	7.723	79.4	296.3	2585.18	172.3	10.52
	10	-	_	0.312	31.376	773.188	31.060	8.38	8.214	106	335.2	3898.89	243.7	11.20
	_	Std	_	0.375	31.250	766.990	37.257	8.38	8.181	127	332.5	4658.48	291.2	11.18
	20	XS	_	0.500	31.000	754.768	49.480	8.38	8.116	168	327.2	6138.62	383.7	11.14
32	30	_	_	0.625	30.750	742.643	61.605	8.38	8.050	209	322.0	7583.39	474.0	11.09
32.0000	40	_	_	0.688	30.624	736.569	67.678	8.38	8.017	230	319.3	8298.32	518.6	11.07
		_	_	0.750	30.500	730.617	73.631	8.38	7.985	250	316.8	8993.35	562.1	11.05
	_	_	_	0.875	30.250	718.688	85.559	8.38	7.919	291	311.6	10369.1	648.1	11.03
	_	_	_	1.000	30.000	706.858	97.389	8.38	7.854	331	306.5	11711.1	731.9	10.97
	_	_	_	1.125	29.750	695.126	109.121	8.38	7.789	371	301.4	13020.0	813.7	10.97
				1.125	20.100	000.120	100.121	0.00	1.103	0/1		10020.0	010.7	10.32

Nom. Pipe Size,	So	hedul	e	Wall	Inside	Inside	Metal	Outside	Inside	Weight	Weight of Water	Moment	Section	Radius
O.D.		umber		Thickness Inch		Area	Area	Surface	Surface	per Foot	per Foot Lbs.	of Inertia	Modulus In. ³	Gyration
Inches	а	b	C	-	Inch	Sq. In.	Sq. In.	Sq. Ft./Ft.	Sq. Ft./Ft.	Lbs.†		In. ⁴		In.
	_	_	-	0.250	33.500	881.413	26.507	8.90	8.770	90.1	382.1	3774.38	222.0	11.93
	10	-	-	0.312	33.376	874.900	33.020	8.90	8.738	112	379.3	4684.65	275.6	11.91
	_	Std	-	0.375	33.250	868.307	39.614	8.90	8.705	135	376.4	5599.28	329.4	11.89
	20	XS	-	0.500	33.000	855.288	52.632	8.90	8.639	179	370.8	7384.89	434.4	11.85
34	30	_	-	0.625	32.750	842.389	65.532	8.90	8.574	223	365.2	9127.59	536.9	11.80
34.0000	40	-	-	0.688	32.624	835.919	72.001	8.90	8.541	245	362.4	9991.61	587.7	11.78
	_	_	-	0.750	32.500	829.577	78.343	8.90	8.508	266	359.7	10832.2	637.2	11.76
	_	-	-	0.875	32.250	816.863	91.057	8.90	8.443	310	354.1	12497.9	735.2	11.72
	-	-	-	1.000	32.000	804.248	103.673	8.90	8.378	352	348.7	14125.4	830.9	11.67
	-	-	-	1.125	31.750	791.730	116.190	8.90	8.312	395	343.2	15715.1	924.4	11.63
	-	-	-	0.250	35.500	989.798	28.078	9.42	9.294	95.5	429.1	4485.90	249.2	12.64
	10	_	_	0.312	35.376	982.895	34.981	9.42	9.261	119	426.1	5569.48	309.4	12.62
	_	Std	_	0.375	35.250	975.906	41.970	9.42	9.228	143	423.1	6658.92	369.9	12.60
36	20	XS	_	0.500	35.000	962.113	55.763	9.42	9.163	190	417.1	8786.20	488.1	12.55
36.0000	30	-	_	0.625	34.750	948.417	69.459	9.42	9.098	236	411.2	10868.4	603.8	12.51
	40	_	_	0.750	34.500	934.820	83.056	9.42	9.032	282	405.3	12906.1	717.0	12.47
	_	_	_	0.875	34.250	921.321	96.555	9.42	8.967	328	399.4	14900.0	827.8	12.42
	_	_	-	1.000	34.000	907.920	109.956	9.42	8.901	374	393.6	16850.7	936.2	12.38
	_	_	_	1.125	33.750	894.618	123.258	9.42	8.836	419	387.9	18758.9	1042.2	12.34
	_	_	_	0.250	41.500	1352.652	32.790	11.00	10.86	111	586.4	7144.71	340.2	14.76
	_	Std	_	0.375	41.250	1336.404	49.038	11.00	10.80	167	579.4	10621.6	505.8	14.72
	20	XS	_	0.500	41.000	1320.254	65.188	11.00	10.73	222	572.4	14035.8	668.4	14.67
42	30	_	-	0.625	40.750	1304.203	81.240	11.00	10.67	276	565.4	17388.1	828.0	14.63
42.0000	40	_	_	0.750	40.500	1288.249	97.193	11.00	10.60	330	558.5	20679.3	984.7	14.59
	_	_	_	1.000	40.000	1256.637	128.805	11.00	10.47	438	544.8	27081.3	1289.6	14.50
	-	_	_	1.250	39.500	1225.417	160.025	11.00	10.34	544	531.3	33247.7	1583.2	14.41
	-	-	-	1.500	39.000	1194.591	190.852	11.00	10.21	649	517.9	39184.3	1865.9	14.33

83

ANVIL MANUFACTURED PRODUCTS

Columbia, PA Foundry

1411 Lancaster Avenue Columbia, PA 17512 Tel: 717-684-4400 • Fax: 717-684-6868 Paul Suor — Plant Manager

Henderson, TN Plant

2870 Old Jackson Road Henderson, TN 38340 Tel: 731-989-3551 • Fax: 731-989-4144 Rich Brooks — Plant Manager

Canvil

390 Second Avenue Simcoe, ON Canada N3Y 4K9 Tel: 519-426-4551 • Fax: 519-426-5509 Brent Widdifield — Plant Manager

Longview, TX Plant

305 Simms Longview, TX 75604 Tel: 903-759-4417 • Fax: 903-759-1782 Van O'Keefe — Plant Manager

J.B. Smith

6618 Navigation Houston, TX 77011 Tel: 713-928-5711 • Fax: 713-928-6733 Ray Mullenix — Plant Manager

North Kingstown, RI Plant

160 Frenchtown Road North Kingstown, RI 02852 Tel: 401-886-3001 • Fax: 401-886-3010 Robert Taylor — General Manager

ENGINEERED PIPE SUPPORTS

- Structural Fabrication
- Field Services
- Non-destructive Testing Contact: North Kingstown, RI Plant 401-886-3001

For Sales and Service Information Contact the Regional Service Center Nearest You or Visit Our Website at www.anvilintl.com

NORTH EAST REGION

Regional Service Center: Servicing Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, East Pennsylvania, Rhode Island, Vermont, Virginia 2530 Pearl Buck Road Bristol, PA 19007 Tel: 215-788-4056 • Fax: 215-788-4475 Dean Taylor — Regional Vice President

MID WEST REGION

Regional Service Center: Servicing Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, Missouri, Nebraska, North and South Dakota, Ohio, West Pennsylvania, West Virginia, Wisconsin

750 Central Avenue University Park, IL 60466 Tel: 708-534-1414 • Fax: 708-534-5441 Toll Free: 1-800-301-2701

Dean Taylor — Regional Vice President

Satellite Offices

1201 W. 96th Street Bloomington, MN 55431 Tel: 952-884-7131 • Fax: 952-887-1501 Toll Free: 1-800-733-7131

9530 Le Saint Drive Fairfield, OH 45014 Tel: 513-682-2330 • Fax: 513-870-0109 Toll Free: 1-800-837-2424

8615 East 33rd Street Indianapolis, IN 46226 Tel: 317-895-2424 • Fax: 317-895-2430 Toll Free: 1-800-837-1515

1930 Warren Street Kansas City, MO 64116 Tel: 816-474-0500 • Fax: 816-221-7150 Toll Free: 1-800-877-7007

24600 Northline Road Taylor, MI 48180 Tel: 734-947-3083 • Fax: 734-947-4682 Toll Free: 1-800-279-1601

WESTERN REGION

Regional Service Center: Servicing Alaska, Arizona, California, Hawaii, Idaho, Montana, Nevada, Oregon, Utah, Washington

1385 Greg Street Sparks, NV 89431 Tel: 775-331-7029 • Fax: 775-331-5075 Toll Free: 1-800-572-0051

Bob Arison — Regional Vice President

Satellite Offices P.O. Box 10206 Portland, OR 97210 Tel: 503-223-7101 • Fax: 503-223-7130 14103 Borate St. Sante Fe Springs, CA 90670 Tel: 562-802-7459 • Fax: 562-802-7519 Corporate Offices 110 Corporate Drive, Suite 10 • P.O. Box 3180 Portsmouth, NH 03802-3180 Tel: 603-422-8000 • Fax: 603-422-8033 E-mail address — Webmaster@anvilintl.com www.anvilintl.com

SOUTH WEST AND SOUTH EAST REGION

Regional Service Center: Servicing Alabama, Arkansas, Colorado, Florida, Georgia, Louisiana, Mississippi, New Mexico, North and South Carolina, Oklahoma, Tennessee, Texas, Wyoming

1313 Avenue R Grand Prairie, TX 75050 Tel: 972-343-9206 • Fax: 972-641-8946 Toll Free: 1-800-451-4414

Bob Arison — Regional Vice President

Satellite Offices

6999 Old Clinton Rd Houston, TX 77020 Tel: 713-675-6371 • Fax: 713-678-7858

2600 W. 42nd Street Odessa, TX 79764 Tel: 915-366-2803 • Fax: 915-366-0890

4200 Holly Street Denver, CO 80216 Tel: 303-394-2178 • Fax: 303-321-3050

Sales Office

1202 Tech Blvd., Suite 103 Tampa, FL 33619 Tel: 800-429-0703 • Fax: 813-663-0811

CANADA — MUELLER-FLOW CONTROL

Kevin Fullan — Vice President Tel: 905-664-1459 ext 272 Doug Crawford — National Marketing Manager Tel: 905-664-1459 ext 248

Alberta

Calgary – Tel: 403-246-0033 • Fax: 403-246-0051 Edmonton – Tel: 780-452-9841 • Fax: 780-452-9873

British Columbia

Delta – Tel: 604-940-1449 • Fax: 604-940-9878 Nanaimo – Tel: 250-758-1551 • Fax: 250-758-1160 Prince George – Tel: 250-561-1219 • Fax: 250-561-7358 Vancouver City – Tel: 604-875-6990 • Fax: 604-875-6962

Manitoba

Winnipeg - Tel: 204-774-3461 • Fax: 204-786-5044

Ontario

Stoney Creek – Tel: 905-664-9230 • Fax: 906-664-9556 Toronto – Tel: 416-251-4171 • Fax: 416-251-7087 Sarnia – Tel: 519-336-7690 • Fax: 519-336-1621 Sudbury – Tel: 705-671-9600 • Fax: 705-671-8082

Quebec

Montreal – Tel: 514-342-2100 • Fax: 514-342-2177 Ste-Foy – Tel: 418-650-5766 • Fax: 418-266-0252

Saskatchewan

Regina – Tel: 306-543-5536 • Fax: 306-545-0390 Saskatoon – Tel: 306-242-6788 • Fax: 306-242-5089